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Finite Element Formulation for Thick Sandwich
Plates on an Elastic Foundation
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To construct a plate theory for a thick transversely compressible sandwich plate with composite laminated face
sheets, the authors make simplifying assumptions regarding distribution of transverse strain components in the
thickness direction. It is assumed that the transverse strains (i.e., "xz , "yz , and "zz ) do not vary in the thickness
direction within the face sheets and the core, but can be different functions of the in-plane coordinates in different
sublaminates (the face sheets and the core). An algorithm, which takes account of damage progression in dynamic
problems, is incorporated into the computational scheme based on the geometrically nonlinear formulation and is
applied to failureanalysisof a sandwich plate under ground impact. In the � nite element analysisof sandwich plates
with small thickness-to-length ratios, the shear locking phenomenon does not occur. The model of the sandwich
plate, presented in this paper, does not require many degrees of freedom in the � nite element computations and
has a wide range of applicability: It can be applied to the sandwich plates with a wide range of ratios of thickness
to the in-plane dimensions, with both thin and thick face sheets (as compared to the thickness of the core) and to
the sandwich plates with both transversely rigid and transversely compressible face sheets and cores.

Introduction

S ANDWICH structures are used in a variety of load-bearingap-
plications.Sandwichplateshave a well pronouncedzigzagvari-

ation of the in-planedisplacementsin the thicknessdirection,due to
their high thickness-to-length ratios and large difference of values
of elastic moduli of the face sheets and the core. Such character-
istics of the sandwich plates make it necessary to use a layerwise
approach in their analysis, the idea of which is to introduceseparate
simplifying assumptions regarding the through-thicknessvariation
of displacements, strains, or stresses within each face sheet and
the core. Many researchers studied the sandwich plate with thick,
lightweight, vertically stiff cores, and thin rigid face sheets, using
discrete-layer (or layerwise) models. Most of the layerwise mod-
els of such structures are based on the piecewise linear through
the thickness in-plane displacement approximations in addition to
constant (though-the-thickness) transverse displacements.1¡9

The modern cores are usually made of plastic foams and non-
metallic honeycombs, like Aramid and Nomex. These cores have
properties similar to those used traditionally (for example, metallic
honeycombs), but due to their transverse compressibility (i.e., abil-
ity of such cores to change height under applied loads) the direct
transverse strain "zz becomes important. Therefore, the models of
the sandwich plates with the cores made of plastic foams or non-
metallic honeycombs must not exclude the change of height of the
core. Frostig and Baruch10 developed a theory of a sandwich beam
with thin face sheets in which account is taken of transverse com-
pressibility of the core, and the longitudinal displacement in the
core varies nonlinearly in the thickness direction. In this theory,
the longitudinal displacement in the face sheets varies linearly in
the thickness direction, and the transverse displacementof the face
sheets does not vary in the thicknessdirection, that is, the transverse
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direct strain "zz in the face sheets is assumed to be equal to zero in
the expression for the strain energy. The transverse shear strain "xz

in the face sheets is also considered to be negligibly small in the ex-
pression for the strain energy that is used for variational derivation
of the differential equations for the unknown functions. The trans-
verse shear stress in the face sheets can be computed by integration
of the pointwise equilibrium equations ¾x x;x C ¾x z;z D 0.

Under certaincircumstances,when the facesheetsare thick,when
the plate is loaded by a concentrated or partially distributed load,
or when the plate is on an elastic foundation, taking account of
the direct transverse strain "zz in the face sheets and the transverse
shear strain "xz in the face sheets in the expression for the strain
energy allows one to obtain a higher accuracy of the stress com-
putation. Besides, to achieve a high accuracy of stress computation
in the thick face sheets, a model for such a plate must assume or
lead to the nonlinear through-the-thickness variationof the in-plane
displacements, not only in the core, but also in the face sheets.

Construction of a computational scheme that satis� es these re-
quirements can be approached, for example, with the help of the
layerwise laminated plate theory of Reddy,11 which is a generaliza-
tion of many other displacement-based layerwise theories of lami-
nated plates. In this theory, the displacement � eld in the kth layer is
written as

u.k/.x; y; z; t/ D
mX

j D 1

u.k/

j .x; y; t/Á .k/

j .z/

v.k/.x; y; z; t/ D
mX

j D 1

v
.k/

j .x; y; t/Á .k/

j .z/

w.k/.x; y; z; t/ D
nX

j D 1

w
.k/

j .x; y; t/Ã .k/

j .z/

where u.k/

j .x; y; t/; v
.k/

j .x; y; t/, and w
.k/

j .x; y; t/ are the unknown
functions and Á

.k/

j .z/ and Ã
.k/

j .z/ are chosen to be Lagrange in-
terpolation functions of the thickness coordinate, to provide the
required continuityof displacementsand discontinuityof the trans-
verse strains across the interface between adjacent thickness sub-
divisions. This theory allows one to achieve a high accuracy of
the transverse stress computation in the composite laminates, but
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for this purpose it requires a large number of thickness subdivi-
sions of the laminate. This leads to a large number of the unknown
functions and degrees of freedom in a � nite element model. In ef-
fect, the � nite element model, based on this generalized layerwise
laminated plate theory, is equivalent to the three-dimensional � -
nite element model. To reduce the number of the unknown func-
tions in the layerwise model of a laminated plate, one can use the
concept of a sublaminate (i.e., make the number of thickness sub-
divisions less than the number of material layers) and deal with
the material properties, averaged through the thickness of a sub-
laminate. In a model of the sandwich plate, it is natural to choose
three sublaminates: the two face sheets and the core. With such a
small number of sublaminates, the nature of assumptions on the
through-the-thickness variation of displacements can have a large
effect on the accuracy of the computed stresses. Besides, the actual
through-the-thickness variationof displacementscan dependon the
character of applied loads and boundary conditions. Therefore, in
a layerwise model of the sandwich plate with only three sublami-
nates, it is desirable to have � exibility in the choice of the functions
that represent through-the-thickness variation of displacements.Of
course, the Lagrange interpolation polynomials, which represent
the thicknessvariationof the displacementswithin a sublaminate in
the Reddy’s11 layerwise theory, can be chosen to be of any desired
degree, but such an increaseof the degree of the Lagrange interpola-
tion polynomials leads to the increaseof the numberof the unknown
functions.

In the present paper, we construct a computational scheme for
analysis of the sandwich plate in which the simplifying assump-
tions that lead to a plate-type theory are made with respect to the
variation of the transverse strains in the thickness direction of the
face sheets and the core of the sandwich plate. The displacements
are then obtainedby integrationof these assumed transversestrains,
and the constants of integrationare chosen to satisfy the conditions
of continuity of the displacements across the borders between the
face sheets and the core. In such a method, the required continuity
of displacements in the thickness direction is satis� ed regardless
of the assumed type of through-the-thickness distribution of the
transverse strains, and the transverse � exibility of the plate can be
taken into account. This leads to a larger number of choices of sim-
plifying assumptions about the variation of strains (and, therefore,
displacements) in the thickness direction and, therefore, allows a
better adjustment of the computational scheme to the conditions
under which the sandwich plate is analyzed by a layerwise method
with only three sublaminates (being the face sheets and the core).
The transversestressesare computedby integrationof the pointwise
equilibriumequations that leads to satisfactionof conditionsof con-
tinuity of the transverse stresses across the boundaries between the
face sheets and the core and satisfaction of stress boundary condi-
tions on the upper and lower surfaces of the plate.

In the present paper, we consider the model based on the sim-
plest of such assumptions that do not ignore in the expression for
the strain energy the transverse shear and normal strains in the face
sheets.We assumethat the transversestrainsdo not vary in the thick-
nessdirectionwithin the facesheets and the core,but can be different
functions of the in-plane coordinate in the face sheets and the core.
In the postprocess stage of analysis, these � rst approximations of
the transverse strains can be improved by substituting the trans-
verse stresses, obtainedby integrationof the pointwise equationsof
motion (Appendix) into the strain–stress relations. These improved
valuesof the transversestrainsvary in the thicknessdirectionand are
suf� ciently accurate as compared to those of the known exact solu-
tions, based on the linear three-dimensionaltheory.12 In the theory,
discussed in this paper, the transversedisplacement,obtainedby in-
tegration of the assumed transversenormal strain, varies linearly in
the thicknessdirection within a sublaminate. (Therefore, transverse
compressibilityof the plate is taken into account.) The in-plane dis-
placement, obtained by integration of the assumed transverse shear
strains, varies quadratically within the thickness of a sublaminate.
The developed theory does not require many degrees of freedom in
� nite element models, despite its ability to capture the transverse
� exibilityof the plate and nonlinear through-the-thickness variation
of the in-plane displacements.

Three-Dimensional Formulation
The sandwichplate is dividedinto three conventionallayers (sub-

laminates): the two face sheets and the core. Within each sublami-
nate, the simplifying assumptions of the plate theory are made sep-
arately. In the following text, the superscript k denotes the number
of a sublaminate: k D 1 denotes the lower face sheet, k D 2 denotes
the core, and k D 3 denotes the upper face sheet (Fig. 1).

In the subsequenttext, both indicial and nonindicialnotations for
the displacements will be used interchangeablywithout a prelimi-
nary notice, the correspondencebetween them being establishedas
follows: u1 D u, u2 D v, and u3 D w.

As energy-conjugate measures of strain and stress, we use the
Green–Lagrangestraintensorand the secondPiola–Kirchhoffstress
tensor. We limit our research to the important case of small strains,
moderate displacements(of the order of thickness of the plate), and
moderate rotations (10–15 deg). This means that of all of the higher-
order terms in the Green–Lagrange strain-displacementrelations

"i j D 1
2 .u i; j C u j;i C us;i us; j / (1)

only u3;®u3;¯ (®, ¯ D 1; 2) are not negligible compared to u®;i
(® D 1; 2; i D 1, 2, 3).11;13 Therefore, the strain–displacement re-
lations become

"x x D u ;x C 1
2 .w;x /2 (2)

"yy D v;y C 1
2 .w;y/

2 (3)

"x y D 1
2 .u ;y C v;x C w;x w;y / (4)

"xz D 1
2
.u;z C w;x / (5)

".k/
yz D 1

2 .v;z C w;y / (6)

"zz D w;z (7)

Now we need to � nd the simpli� ed equations of motion and bound-
ary conditions, such that their accuracy corresponds to the accu-
racy of the adopted von Kármán13 strain–displacement relations.
These equations of motion are used for computation of the trans-
verse stresses in the postprocessingstage of the � nite element anal-
ysis. We receive the equations of motion and boundary conditions,
consistentwith thevon Kármán strain–displacementrelations(2–7),
using the virtual work principle (see Appendix). The equations of
motion are written for each of the three conventional layers: the
upper and lower face sheets and the core. The boundary conditions
are applied to the upper and lower surfaces of the plate and to the
interfaces between the face sheets and the core, with the result that
at the lower surface,

¾ .1/
x z D 0; ¾ .1/

yz D 0; ¾ .1/
zz D ¡ql (8)

at the upper surface,

¾ .3/
xz D 0; ¾ .3/

yz D 0; ¾ .3/
zz D qu (9)

Fig. 1 Coordinate system and notations for the sandwich plates; axis
z is in the thickness direction, h is a thickness of the whole plate, and t
is a thickness of the core.
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and at the interfaces,

¾ .1/
xz .z2/ D ¾ .2/

xz .z2/; ¾ .1/
yz .z2/ D ¾ .2/

yz .z2/

¾ .1/
zz .z2/ D ¾ .2/

zz .z2/ (10)

¾ .2/
xz .z3/ D ¾ .3/

xz .z3/; ¾ .2/
yz .z3/ D ¾ .3/

yz .z3/

¾ .2/
zz .z3/ D ¾ .3/

zz .z3/ (11)

In the laminate coordinate system (x; y; z), whose axes are
aligned with the sides of the plate, the stress–strain relations for
an orthotropic material have the form11

8
>>>>>><

>>>>>>:

¾x x

¾yy

¾zz

¾yz

¾x z

¾x y

9
>>>>>>=

>>>>>>;

D

2

66666664

NC11
NC12

NC13 0 0 NC16

NC12
NC22

NC23 0 0 NC26

NC13
NC23

NC33 0 0 NC36

0 0 0 NC44
NC45 0

0 0 0 NC45
NC55 0

NC16
NC26

NC36 0 0 NC66

3

77777775

8
>>>>>><

>>>>>>:

"x x

"yy

"zz

2"yz

2"x z

2"x y

9
>>>>>>=

>>>>>>;

(12)

or

f¾ g D [ NC]f"g (13)

where NCi j are the elastic coef� cients, referred to the laminate coor-
dinate system.

In addition,thedisplacementsmust be continuousat the interfaces
between the faces and the core:

u.1/

i

­­
z D z2

D u.2/

i

­­
z D z2

; u.2/

i

­­
z D z3

D u.3/

i

­­
z D z3

(14)

Two-Dimensional Plate Theory
Simplifying Assumptions of the Plate Theory

To construct a two-dimensional plate theory, we make simpli-
fying assumptions regarding a distribution of the transverse strain
components in the thickness direction. We assume that within the
face sheets and the core the transverse strains do not depend on the
z coordinate, but they can be different functions of coordinates x
and y and time t in different face sheets and the core:

".k/
xz D ".k/

xz .x; y; t/; ".k/
yz D ".k/

yz .x; y; t/

".k/
zz D ".k/

zz .x; y; t/; .k D 1; 2; 3/ (15)

where the superscriptk denotes the number of a sublaminate:k D 1
denotes the lower face sheet, k D 2 denotes the core, and k D 3 de-
notes the upper face sheet. Accuracy of the theory, based on these
assumptions, is studied in the paper of Perel and Palazotto.12

The assumed transverse strains of Eqs. (15), together with dis-
placements of the middle surface of the plate

u0.x; y; t/ ´ u.2/
­­

z D 0
; v0.x; y; t/ ´ v.2/

­­
z D 0

w0.x; y; t/ ´ w.2/
­­

z D 0
(16)

are the unknown functions of the problem that will be computed by
the � nite element method. Therefore,all displacements,strains, and
stresses must be expressed in terms of these functions.

Displacements in Terms of the Unknown Functions
To obtain expressions for the displacements in terms of the

unknown functions ".k/
xz , ".k/

yz , ".k/
zz , u0, v0, and w0, the strain–

displacementrelations(5–7)are integratedwith the followingresult:

w.1/.x; y; z; t/ D w0.x; y; t/ C ".2/
zz .x; y; t/z2

C ".1/
zz .x; y; t/.z ¡ z2/ .z1 · z · z2/ (17)

w.2/.x; y; z; t/ D w0.x; y; t/ C ".2/
zz .x; y; t/z (18)

w.3/.x; y; z; t/ D w0.x; y; t/ C ".2/
zz .x; y; t/z3

C ".3/
zz .x; y; t/.z ¡ z3/ .z3 · z · z4/ (19)

u.1/ D u0 C
¡
2".2/

xz ¡ w0;x

¢
z2 ¡ 1

2
".2/

zz;x z2
2

C
¡
2".1/

x z ¡ w0;x ¡ ".2/
zz;x z2

¢
.z ¡ z2/ ¡ 1

2 ".1/
zz;x .z ¡ z2/2

.z1 · z · z2/ (20)

u.2/ D u0 C
¡
2".2/

xz ¡ w0;x

¢
z ¡ 1

2 ".2/
zz;x z2 .z2 · z · z3/ (21)

u.3/ D u0 C
¡
2".2/

xz ¡ w0;x

¢
z3 ¡ 1

2 ".2/
zz;x z2

3

C
¡
2".3/

x z ¡ w0;x ¡ ".2/
zz;x z3

¢
.z ¡ z3/ ¡ 1

2
".3/

zz;x .z ¡ z3/2

.z3 · z · z4/ (22)

v.1/ D v0 C
¡
2".2/

yz ¡ w0;y

¢
z2 ¡ 1

2
".2/

zz;y z2
2

C
¡
2".1/

yz ¡ w0;y ¡ ".2/
zz;y z2

¢
.z ¡ z2/ ¡ 1

2 ".1/
zz;y.z ¡ z2/2

.z1 · z · z2/ (23)

v.2/ D v0 C
¡
2".2/

yz ¡ w0;y

¢
z ¡ 1

2 ".2/
zz;y z2 .z2 · z · z3/ (24)

v.3/ D v0 C
¡
2".2/

yz ¡ w0;y

¢
z3 ¡ 1

2 ".2/
zz;y z2

3

C
¡
2".3/

yz ¡ w0;y ¡ ".2/
zz;y z3

¢
.z ¡ z3/ ¡ 1

2 ".3/
zz;y.z ¡ z3/2

.z3 · z · z4/ (25)

It can be veri� ed easily that these expressionsfor the displacements
are continuousacross the boundariesbetween the faces and the core,
that is, at z D z2 and z D z3 .

Strains in Terms of the Unknown Functions
Expressions for the in-plane strains ".k/

x x , ".k/
x y , and ".k/

yy in terms
of the unknown functions are obtained by substituting expressions
(17–25) for displacements in terms of the unknown functions into
the strain–displacement relations (2), (3), and (4). The transverse
strains ".k/

xz , ".k/
yz , and ".k/

zz are the unknown functions themselves.

Extended Hamilton’s Principle, Written for This Speci� c Problem
To derive either differential equations for the unknown functions

with boundaryconditions,or the � nite element formulation,one can
use the extended Hamilton’s principle

±

Z t2

t1

.T ¡ 5/ dt C
Z t2

t1

± 0Wnc dt D 0 (26)

where T is a kinetic energy of the system, 5 is a total potential
energy of the system, and ± 0Wnc is a virtual work of external non-
conservative forces. Therefore, the extended Hamilton’s principle
for the sandwich plate on an elastic foundation can be written as
follows:

±

Z t2

t1

[(kinetic energy of plate) ¡ (strain energy of plate)

¡ (strain energy of elastic foundation)

¡ (potential energy of plate in gravity � eld)] dt

C
Z t2

t1

(virtual work of damping forces) dt

C
Z t2

t1

(virtual work of surface forces)dt D 0 (27)

To derive the differential equations for the unknown functions with
the boundary conditions, or to obtain a � nite element formulation,
all terms in the Hamilton’s principle (27) need to be written in terms
of the unknown functions u0 , v0, w0 , ".1/

x z , ".1/
yz , ".1/

zz , ".2/
x z , ".2/

yz , ".2/
zz ,

".3/
xz , ".3/

yz , and ".3/
zz .
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Kinetic Energy of the Sandwich Plate
When it is considered that the mass density of the face sheets is

constant, kinetic energy of the lower face sheet, core, and the upper
face sheet can be written as follows:

T .k/ D 1
2

½.k/

Z Z Z

.V .k//

8
><

>:

Pu.k/

Pv.k/

Pw.k/

9
>=

>;

T 8
><

>:

Pu.k/

Pv.k/

Pw.k/

9
>=

>;
dV .k D 1; 2; 3/

(28)
where dots over the letters denote partial derivativeswith respect to
time. The displacements in Eq. (28) are expressed in terms of the
unknown functions by formulas (17–25). The kinetic energy of the
sandwich plate is the sum of kinetic energies of the face sheets and
the core:

T D T .1/ C T .2/ C T .3/ (29)

Strain Energy of the Sandwich Plate
The face sheets of a sandwich plate are made from composite

laminates, which are built up of � ber-reinforcedplies. The orienta-
tion of the � bers can vary from ply to ply, and, therefore, values of
the stiffness coef� cients NC i j in the Hooke’s law (referred to the lam-
inate coordinate system) can vary from ply to ply in the face sheets.
Let us introduce the following notation for a stiffness coef� cient
in the Hooke’s law for a ply of the lower face sheet, in the laminate
coordinate system:

® NC .1/

i j (30)

where the right superscript (1) denotes that a stiffness coef� cient is
associated with the � rst sublaminate, that is, the lower face sheet,
the left superscript® is a number of a ply in a lower face sheet, and
subscripts i and j denote a positionof the stiffness coef� cient in the
stiffnessmatrix. The stiffness matrix with components ® NC .1/

i j will be
denotedas [ NC .1/

® ]. Thus, the strain energy of a lower face sheet’s ply
with a number ® is

U .1/
® D 1

2

Z Z Z

.V .1/
® /

©
".1/

ªT £
NC .1/

®

¤©
".1/

ª
dV (31)

where V .1/
® is volume of a ply with number ®, of the lower face

sheet, and the column matrix of strains f".1/g is de� ned as follows:
©
".1/

ª
´

¥
".1/

x x ".1/
yy ".1/

zz 2".1/
yz 2".1/

xz 2".1/
x y

¦T
(32)

Unlike the material coef� cients ® NC .1/

i j , the strains do not have a
subscript ®, which denotes a number of a ply of the lower face
sheet, because assumptions about through-the-thickness variation
of strains are made for the whole lower face sheet, not for each
individual ply of the lower face sheet. Therefore, each strain in the
lower face sheet, as a function of the z coordinate, is represented
with a single expression through the thickness of the lower face
sheet.

The strain energy U .1/ of the whole lower face sheet is a sum of
strain energies of the plies of the lower face sheet:

U .1/ D
nX

® D 1

U .1/
®

(33)

Similarly, one can write an expression for the strain energy of the
upper face sheet U .3/. The core of the sandwich plate is considered
to be a homogeneous orthotropic medium. However, the failure in
the core can be distributednonuniformly in the thickness direction.
As a result of this, in the presence of failure, the coef� cients NCi j

of the stress–strain relation of the core can vary in the thickness
direction. To take account of this, the core is nominally divided
into layers parallel to the x – y plane, such that within each layer the
coef� cients of the stress–strain relation can be considered approxi-
mately constant in the thickness direction. Thus, the core is treated
as a laminated plate, the same way as the face sheets. The strain

energy of the sandwich plate is the sum of the strain energies of the
core and the face sheets

U D U .1/ C U .2/ C U .3/ (34)

Potential Energy of the Sandwich Plate in the Gravity Field
The potential energy of the sandwich plate in the gravity � eld 5g

is equal to the sum of potential energies of the lower face 5.1/
g , the

core 5.2/
g , and the upper face 5.3/

g :

5g D 5.1/
g C 5.2/

g C 5.3/
g (35)

where

5.k/
g D ½ .k/g

Z B

0

Z L

0

Z zk C 1

zk

w.k/ dz dx dy (36)

Strain Energy of Elastic Foundation
The strain energy of the elastic foundation,modeled as a Winkler

foundation, is de� ned by the expression

U f D 1

2

Z B

0

Z L

0

s.x/

±
w.1/

­­
z D z1

²2

dx dy (37)

where s.x/ is a modulus of the foundation.

Virtual Work of Surface Forces
It is assumed that the upper and lower surfaces of the plate are

loaded by distributed forces in the transverse direction (along the
z axis). Let qu .x; y; t/ and ql .x; y; t/ be forces per unit area in the
transverse direction, acting on the plate’s upper and lower surfaces,
respectively.Then the virtual work ± 0W of these forces is

± 0Ws D
Z B

0

Z L

0

qu.x; y; t/±w.3/
­­

z D z4
dx dy

C
Z B

0

Z L

0

ql.x; y; t/±w.1/
­­

z D z1
dx dy (38)

Virtual Work of Damping Forces
The damping force per unit volumewill be denotedas U . We will

consider, because it is generally accepted, that the damping force is
proportional to the velocity. Then, for the kth sublaminate, we can
write the followingexpressionfor the columnmatrix of components
of the damping force per unit volume:

8
><

>:

8.k/
x

8.k/
y

8.k/
z

9
>=

>;
D ¡¯ .k/½ .k/ @

@t

8
><

>:

u.k/

v.k/

w.k/

9
>=

>;
(39)

where ¯.k/ and ½ .k/ are, respectively,a damping parameter and mass
density of the kth sublaminate. The virtual work of the damping
force in the kth sublaminate can be written as follows:

± 0W .k/

d D
Z B

0

Z L

0

Z zk C 1

zk

8
<

:

±u.k/

±v.k/

±w.k/

9
=

;

T
8
><

>:

8.k/
x

8.k/
y

8.k/
z

9
>=

>;
dz dx dy (40)

The virtual work of the damping forces in the whole sandwich plate
is the sum of the virtual works in the face sheets and the core:

±0Wd D ±0W .1/

d C ±0W .2/

d C ±0W .3/

d (41)

The extended Hamilton’s principle, written in terms of the un-
known functions, can be used for deriving either differential equa-
tions and boundary conditions for the unknown functions, or it can
be used for a � nite element formulation. In the following section,
we will develop a � nite element formulation for the sandwich plate
in cylindrical bending.
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Finite Element Formulation for Cylindrical Bending
Let us call the dimension of the plate in the x direction the length

and the dimension in the y direction the width. If the width of the
plate is much larger than its length, and if the load intensitydoes not
vary in the width direction, then the displacements do not depend
on the y coordinate:

u D u.x; z/; v D v.x; z/; w D w.x; z/ (42)

Such a condition is called a generalized plane strain or cylindri-
cal bending. In case of cylindrical bending, the unknown functions
depend only on the x coordinate and time. Therefore, the two-
dimensionalplate-bendingproblem reduces to the one-dimensional
problem.Then,all derivativeswith respectto the y coordinatevanish
in all formulas of the preceding sections.

Hereafter, we will consider a sandwich plate with an isotropic
or transversely isotropic core and with face sheets being composite
laminates of 0- and 90-deg plies orientation. In this case, at each
point of the plate there is a plane of elastic symmetry parallel to the
x – z coordinateplane,and, therefore,theconditionof thegeneralized
plane strain reduces to the condition of pure plane strain,14 that is,

u D u.x; z/; w D w.x; z/; v D 0 (43)

and all strain components,associatedwith the y direction,are equal
to zero:

"yy D 0; "xy D 0; "yz D 0 (44)

Therefore, the unknown functions are

u0; w0; ".1/
x z ; ".1/

zz

".2/
xz ; ".2/

zz ; ".3/
x z ; ".3/

zz (45)

To perform a � nite element formulation, we represent the
unknown functions ".k/

x z .x; t/, ".k/
zz .x; t/, u0.x; t/, and w0.x; t/ by

piecewise interpolationpolynomials:

u0 D bM1 M2c
»

u.0/

u.l/

¼
(46)

".k/
x z D bM1 M2c

(
".k/

x z .0/

".k/
xz .l/

)
(47)

where

M1 D 1 ¡ x=l; M2 D x=l (48)

and l is a length of a � nite element

w0 D bN1 N2 N3 N4c

8
>>>>>><

>>>>>>:

w0.0/

dw0

dx
.0/

w0.l/

dw0

dx
.l/

9
>>>>>>=

>>>>>>;

(49)

".k/
zz D bN1 N2 N3 N4c

8
>>>>>>><

>>>>>>>:

".k/
zz .0/

d".k/
zz

dx
.0/

".k/
zz .l/

d".k/
zz

dx
.l/

9
>>>>>>>=

>>>>>>>;

(50)

where

N1 D 1 ¡ 3x2=l2 C 2x3=l3; N2 D x ¡ 2x2=l C x3=l2

N3 D 3x2=l2 ¡ 2x3=l3; N4 D ¡x2=l C x3=l2 (51)

Here and further in this section, devoted to the � nite element formu-
lation,it is implied for simplicityof notationsthat x is a coordinatein
the element (local) coordinatesystem, the origin of which coincides
with a left node of a � nite element.

Thus, the combined � nite element has 24 degrees of freedom.
At each node there are 12 nodal parameters: u0 , ".1/

x z , ".2/
x z , ".3/

xz , w0,
dw0=dx , ".1/

zz , d".1/
zz =dx , ".2/

zz , d".2/
zz =dx , ".3/

zz , and d".3/
zz =dx .

From the extended Hamilton’s principle (27), written in terms
of nodal parameters di , i D 1; 2; : : : ; 24, the following equation of
motion of a � nite element in terms of the nodal parameters can be
derived:

[m]
.24 £ 24/

f Rdg
.24 £ 1/

C [c]
.24 £ 24/

f Pdg
.24 £ 1/

C [k]
.24 £ 24/

fdg
.24 £ 1/

C
@Unl

@fdg
.24 £ 1/

D frg
.24 £ 1/

(52)

In this equation,a partUnl of the strain energy is due to the nonlinear
terms in the strain-displacementrelations(geometricnonlinearityof
the von Kármán13 type). The expression for Unl is not a quadratic
form of the nodal variables; therefore, the vector @Unl=@fdg is not
linearwith respectto thenodalvariables.The matrices that enter into
Eq. (52) were derived with the use of exact integration, performed
with a program for symbolic computation, MAPLE. In our � nite
element analysis, the global damping matrix is not assembled from
the element damping matrices. Instead, the proportional damping
model is used, in which the global damping matrix [C] is presented
as a linear combination of the global stiffness and mass matrices.
[Therefore, the virtual work of the damping forces, as presented by
Eqs. (35–37), is not used in our � nite element formulation, but has
only a theoretical importance in formulating the two-dimensional
plate-type theory.] Thus,

[C] D ®1[K ] C ®2[M] (53)

where ® and ¯ are constants to be determined from two given loga-
rithmic decrementsof damping, ±1 and ±2 , which correspond to two
unequal frequencies of vibrations !1 and !2 by the formulas

®1 D ±1!1 ¡ ±2!2

¼
¡
!2

1 ¡ !2
2

¢ (54)

®2 D !1!2.±2!1 ¡ ±1!2/

¼
¡
!2

1 ¡ !2
2

¢ (55)

The assembled equations of motion of the whole structure were
solved by direct integration with the use of the Newmark method
(see Ref. 11).

In the postprocessing stage of the � nite element analysis, the
in-plane stresses ¾ .k/

x x , ¾ .k/
x y , and ¾ .k/

yy are computed with the use of
the constitutive equations, which, in the case of pure plane strain
(cylindrical bending), take the form

¾ .k/
x x D NC .k/

11 ".k/
x x C NC .k/

13 ".k/
zz (56)

¾ .k/
x y D NC .k/

16 ".k/
x x C NC .k/

36 ".k/
zz (57)

¾ .k/
yy D NC .k/

12 ".k/
x x C NC .k/

23 ".k/
zz (58)

whereas the transverse stresses ¾ .k/
x z , ¾ .k/

yz , and ¾ .k/
zz need to be com-

puted by integrationof the pointwise equationsof motion,which, in
the case of pure plane strain and under the assumption that the plate
is perpendicular to the direction of gravity force, take the form

¾ .k/
x x;x C ¾ .k/

xz;z D ½.k/ Ru.k/ (59)

¾ .k/
yx ;x C ¾ .k/

yz;z D 0 (60)

¾ .k/
zx;x C ¾ .k/

zz;z C @

@x

¡
¾ .k/

x x w.k/
;x

¢
¡ ½ .k/g D ½.k/ Rw.k/; .k D 1; 2; 3/

(61)

If one integrates Eqs. (59–61) and satis� es stress boundary con-
ditions on the lower surfaces [Eqs. (8)] and conditionsof continuity
of the transverse stresses [Eqs. (10) and (11)], one gets
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¾ .1/
x z D

Z z

z1

¡
½ .1/ Ru.1/ ¡ H¾ .1/

x x;x

¢
dz .z1 · z · z2/ (62)

¾ .2/
x z D

Z z2

z1

¡
½.1/ Ru.1/ ¡ H¾ .1/

x x;x

¢
dz C

Z z

z2

¡
½ .2/ Ru.2/ ¡ H¾ .2/

xx ;x

¢
dz

.z2 · z · z3/ (63)

¾ .3/
x z D

Z z2

z1

¡
½.1/ Ru.1/ ¡ H¾ .1/

x x;x

¢
dz C

Z z3

z2

¡
½ .2/ Ru.2/ ¡ H¾ .2/

x x;x

¢
dz

C
Z z

z3

¡
½.3/ Ru.3/ ¡ H¾ .3/

x x;x

¢
dz .z3 · z · z4/ (64)

¾ .1/
yz .x; z; t/ D ¡

Z z

z1

H¾ .1/
yx ;x dz (65)

¾ .2/
yz .x; z; t/ D ¡

Z z2

z1

H¾ .1/
yx ;x dz ¡

Z z

z2

H¾ .2/
yx ;x dz (66)

¾ .3/
yz .x; z; t/ D ¡

Z z2

z1

H¾ .1/
yx ;x dz ¡

Z z3

z2

H¾ .2/
y x;x dz ¡

Z z

z3

H¾ .3/
yx ;x dz

(67)

¾ .1/
zz D ¡

ql

b
C

Z z

z1

µ
½ .1/

¡
Rw.1/ C g

¢
¡ @

@x

¡
H¾ .1/

x x w.1/
;x

¢
¡ ¾ .1/

zx;x

¶
dz

(68)

¾ .2/
zz D ¡

ql

b
C

Z z2

z1

µ
½ .1/

¡
Rw.1/ C g

¢
¡

@

@x

¡
H¾ .1/

x x w.1/
;x

¢
¡ ¾ .1/

zx;x

¶
dz

C
Z z

z2

µ
½.2/

¡
Rw.2/ C g

¢
¡ @

@x

¡
H¾ .2/

x x w.2/
;x

¢
¡ ¾ .2/

zx ;x

¶
dz (69)

¾ .3/
zz D ¡

ql

b
C

Z z2

z1

µ
½ .1/

¡
Rw.1/ C g

¢
¡ @

@x

¡
H¾ .1/

x x w.1/
;x

¢
¡ ¾ .1/

zx;x

¶
dz

C
Z z3

z2

µ
½ .2/

¡
Rw.2/ C g

¢
¡

@

@x

¡
H¾ .2/

x x w.2/
;x

¢
¡ ¾ .2/

zx;x

¶
dz

C
Z z

z3

µ
½.3/

¡
Rw.3/ C g

¢
¡ @

@x

¡
H¾ .3/

x x w.3/
;x

¢
¡ ¾ .3/

zx ;x

¶
dz (70)

In Eqs. (62–70), the in-plane stresses with the left superscripts H
(which stands for Hooke’s law) are computed with the use of the
Hooke’s law, that is, from equations (56–58). As can be seen from
Eqs. (62–70), the inertia and nonlinear terms are taken into account
in the expressions for the transverse stresses.

With the use of Eqs. (56–58) and (62–70), all stress components
can be expressed in terms of the unknown functions u0 , w0 , ".1/

xz ,
".1/

zz , ".2/
x z , ".2/

zz , ".3/
x z , and ".3/

zz . The expressionsfor the stresses in terms
of the unknown functions are not shown explicitly because of their
large size. Examples of such expressions are shown in the paper of
Perel and Palazotto.12

The values of u0 , w0 , @w0=@x , ".k/
zz , @".k/

zz =@x , and ".k/
xz are most

accurate at the nodes of the � nite element mesh (because these
variables are carried as nodal variables), and for computation of
stresses, they can be taken directly from the � nite element solu-
tion. The second derivatives @2w0=@x2 and @ 2".k/

zz =@x2, computed
from interpolation polynomials, used in the � nite element formu-
lation, are most accurate at the Gauss points. (The locations of the
minimal-errorpointsof the derivativesof the � eld variableswithin a
� nite elementwere calculatedwith the use of a methodpresentedby
Akin.15) The third derivatives @3w0=@x3 and @3".k/

zz =@x3 , computed
from the interpolationpolynomials, are constant over the element’s
length and are most accurate in the middle of the � nite element.The
derivatives @4w0=@x4, @4".2/

zz =@x4; @2u0=@x2 , and @2".k/
x z =@x2 , taken

as derivativesof the interpolationpolynomials,which are used in the

� nite element formulation, are equal to zero, which can be wrong
for a particular problem. Therefore, these derivativesare computed
numerically at the nodal points by a � nite difference scheme, using
the nodal values of w0 , ".k/

zz , u0, and ".k/
xz , obtained from the � nite

element solution.Thus, there are no points within the � nite element
where all of the derivatives of the � eld variables are most accurate
simultaneously. Therefore, to compute stresses, the average (over
the element’s length) values of the � eld variables and their deriva-
tives are evaluated,becauseaveragevalues at the pointswhere these
quantities are most accurate, and then substituted into the expres-
sions for the stresses, producingaverage (over the element’s length)
values of stresses.

The computationof the transverse stresses from the equations of
motion allows one to satisfy the stress boundary conditions on the
upper and lower surfaces of the plate and the conditions of conti-
nuity of the transverse stresses at the interfaces between the faces
and the core of the sandwich plate and between the plies with dif-
ferent material properties within the faces.12 The computation of
the transverse stresses by integration of the pointwise equilibrium
equations is demonstrated, for example, in the work by Reddy11

and some other works included in the bibliographytherein.That the
computation of the transverse stresses by integration of the point-
wise equilibrium equations (or equations of motion) allows for the
satisfaction of the stress boundary conditions not only on one of
the external surfaces (upper or lower), but on both of them, was
mentioned in the work of Perel and Palazotto.12

In most common cases of boundary conditions, that is, simply
supported, clamped, and free edges of the plate, the nodal values
of the transverse strains ".1/

x z , ".1/
zz , ".2/

x z , ".2/
zz , ".3/

x z , and ".3/
zz and their

derivatives need not be speci� ed at the edges.

Time Integration with Account of Damage Progression
When a failure occurs in a single layer of a composite laminate,

a composite structurecan still carry a load. Therefore, a subsequent
failure prediction is required to determine a dynamic response of
the structure in the presence of some damage. This problem is dealt
with by assuming that, within a � nite element where the damage
occurs, the original material characteristicsof the damaged ply can
be replaced with degraded material characteristics. The degraded
material properties are assumed to be small fractions of the prop-
erties of the undamaged material, but not equal to zero, to avoid
ill conditioningof the � nite element equations. For example, a de-
graded value of the Young’s modulus Ed of the damaged ply within
a � nite element is computed as

E1d D .SRC/E1 (71)

where E1 is an original value of the Young’s modulus, in this case
multiplied by a stiffness reduction coef� cient (SRC).

The face sheetsof the sandwich plate are made of laminated com-
posite plates that can fail in different modes due to matrix cracking,
� ber fracture, � ber matrix debonds, and delamination. Therefore,
for accurate prediction of failure in the face sheets, one needs to
use a failure criterion that takes account of the microstructure of
the composite laminates and the variety of modes of failure that can
occur due to this microstructure. A set of failure criteria, designed
for this purpose,were suggestedby Hashin.16 Therefore, for the face
sheets, Hashin’s criteria are used in this study.

The core of the sandwich plate, made of polymeric foam or a
honeycomb structure, is modeled as a homogeneous isotropic or
transversely isotropic medium. Such a medium has fewer modes
of failure, namely, crushing under compression and cracking under
tension. Therefore, for the failure analysis of the core, it is more
appropriate to use a failure criterion that does not take account of
the microstructure of the material. One such criterion is the Tsai–
Wu criterion (see Refs. 17 and 18), and it is used for the core in
our study. The core, which is uniform before the beginning of the
damage, becomes nonuniform in the thickness direction (as well
as in longitudinal direction) when the damage starts to progress in
the thickness direction. For this reason, the core is divided into the
nominal layers, and a check of the failure criterion in the middle of
thickness of each such layer is carried out.
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In the case of crushing of the core of the sandwich plate and
tension modes of failure, the SRC for all material constants are set
to be as small as possible,but their smallness is limitedby theneedto
avoidnumericaldif� cultiesthat canbe causedby the largedifference
of values of material constants of adjacent � nite elements. Such
values of the stiffness reduction coef� cients are found by numerical
experimentation.In the numerical examplespresentedhereafter, the
SRC is set equal to 0:001 in the case of crushing of the core of the
sandwich plate and failure in tension and 0.01 in the case of � ber
failure in compression in the face sheets. The stiffness reduction
coef� cient, associated with the � ber failure in compression, is set
equal to a largervaluebecausethe compressive� ber mode of failure
is interpretedas bucklingof � bers in the matrix.19 It is assumed that
if the buckling of the � bers occurs, the layer still has some residual
strength.

At each time step, the average (over a � nite element length)
stresses in each layer within each element are used in the failure
criteria.

Now, the algorithmof taking account of damage progressionwill
be presented without details of how it is embedded into the time
integration scheme: (The details will be presented subsequently.)

1) At each time step of time integration, compute average (over
an element length) stresses ¾x x , ¾x y , ¾yy , ¾xz , ¾yz , and ¾zz in the
problem coordinate system in all � nite elements, in the middle of
each ply of the face sheets [at z D .»k C »k C 1/=2] and in the middle
of each nominal layer of the core. (Computation of average stresses
was discussed earlier.)

2) Transform the stresses to the principle material coordinates,
that is, compute ¾11, ¾22 , ¾33, ¾12, ¾13 , and ¾23 .

3) Substitute the stresses in the material coordinate system into
the failure criteria.The Hashin16 criteria are used for the face sheets
and the Tsai–Wu criterion (Refs. 17 and 18) is used for the core. If
the failure occurs, reduce the appropriate engineering constants of
the face sheets and the core using the methods described earlier.

4) By the use of the modi� ed values of engineering elastic con-
stants, for each layer of each � nite element that fails, recompute
elastic constants ® NC .k/

i j , element stiffness matrices, the global stiff-
ness matrix, and restart the analysis at the same time step, that is,
return to step 1. Such a method is used because when failure oc-
curs the stress � eld changes instantly due to the change of material
properties. This redistribution of the stresses may cause additional
failure to occur. Therefore, in case of failure, the time incrementa-
tion must be stopped, and analysis must be run again for the same
time interval to determine the new failure. If the new failure does
not occur, the analysis can go on to the next time step.

5) If failure does not occur, proceed to the next time step.
Analysis goes on for a number of time steps, speci� ed by a user.

Now, the details will be presented on how the damage progres-
sion algorithm is embedded into the time integration scheme of the
system equations of motion

[M ]f R2g C [C]f P2g C [K ]f2g C fQg D fPg (72)

with the use of the Newmark20 method. In Eq. (72), the matrix [K ]
is the system stiffness matrix, whose components do not depend on
the nodal unknowns 2i , and fQg is a nonlinear part of the internal
force vector, whose components are de� ned as @.Unl/system=@2i ,
where .Unl/system is the whole system’s part of the strain energy that
is not quadratic with respect to the nodal unknowns. The part of
the strain energy .Unl/system appears due to the nonlinear terms in
the von Kármán13 strain-displacementrelations. Thus, the problem
being solved numerically is geometrically nonlinear.

Let us introduce the following notations:

f2gjt D tn ´ f2gn

is the vector of nodal variables,evaluatedat moment of time tn , and

f2gjt D tn C 1 ´ f2gn C 1

is the vector of nodal variables, evaluated at moment of time tn C 1,
¿ ´ tn C 1 ¡ tn .

With the use of the Taylor series expansion, vectors f2gn C 1 and
f P2gn C 1 can be written in the form

f2gn C 1 ¼ f2gn C ¿ f P2gn C ¿ 2
¡

1
2

¡ ¯
¢
f R2gn C ¿ 2¯f R2gn C 1 (73)

f P2gn C 1 ¼ f P2gn C ¿ .1 ¡ ° ¿ /f R2gn C ¿ 2° f R2gn C 1 (74)

where ¯ and ° are free parameters that control the accuracy and
stability of the method. In the example problems considered later,
the values of these parameters were chosen to be ¯ D 1

4 and ° D 1
2 ,

whichcorrespondto themethodof constantmeanacceleration.Such
a method is unconditionally stable and provides a satisfactory ac-
curacy.

Equations of motion (72), evaluated at a moment of time tn C 1,
are

[M ]f R2gn C 1 C [C]f P2gn C 1 C [K ]f2gn C 1 C fQgn C 1 D fPg (75)

In Eqs. (72) and (75), the load vector fPg is due to the gravity force,
and so it does not depend on time and, therefore, does not have the
subscript n. Substitution of Eqs. (73) and (74) into Eq. (75) and
simple transformationsyields

[ OK ]f2gn C 1 C fQgn C 1 D f OF gn (76)

where

[ OK ] ´ [K ] C .1=¿ 2¯/[M] C .° =¯/[C] (77)

f OFgn D fPg ¡ [C][f P2gn C ¿ .1 ¡ ° ¿ /f R2gn ] C f.1=¿ 2¯/[M]

C .° =¯/[C]g
£
f2gn C ¿f P2gn C ¿ 2

¡
1
2

¡ ¯
¢
f R2gn

¤
(78)

Now, assuming that we know the values of f2gn , f P2gn , and f R2gn ,
we need to � nd the values of f2gn C 1, f P2gn C 1 , and f R2gn C 1. Com-
ponents of vector fQgn C 1, which enter into Eq. (76), depend non-
linearly on components of the vector of nodal parameters f2gn C 1:
Therefore, Eq. (76) is a nonlinear system of algebraic equations
with respect to components of the vector f2gn C 1: These nonlin-
ear equations are solved by a direct iteration (Picard) method (see
Ref. 11).

The direct iteration method is based on computing a sequence of
vectors

f2g.1/

n C 1; f2g.2/

n C 1; f2g.3/

n C 1; : : : (79)

by solving a system of linear algebraic equations

[ OK ]f2g.r C 1/

n C 1 D f OFgn ¡ fQg.r /

n C 1 (80)

where the vector fQg.r/

n C 1 is the vector fQgn C 1 evaluated at
f2gn C 1 D f2g.r/

n C 1 , that is, evaluated with the use of values of nodal
parameters 2i obtained at the r th iteration. The components of the
matrix [ OK ] and the vector f OFgn do not depend on the unknowns,
that is, on the components of the vector f2gn C 1 . If the sequence
of vectors f2g.1/

n C 1 , f2g.2/

n C 1 , f2g.3/

n C 1; : : : ; converges to some vec-
tor f Q2gn C 1, then this vector f Q2gn C 1 is a solution of the system of
algebraicequations (76). In our numerical implementation,the � rst
term of the iteration sequence f2g.1/

n C 1 , f2g.2/

n C 1 , f2g.3/

n C 1; : : : ; is set
equal to a zero vector at all time intervals:

f2g.1/

n C 1 D f0g (81)

for n D 1; 2; 3; : : : : Iteration is stopped if a norm of vector
f2g.r C 1/

n C 1 ¡ f2g.r/

n C 1 (a difference of solution vectors in two succes-
sive approximations), dividedby the norm of vector f2g.r C 1/

n C 1 , is less
than some number (tolerance):

®®f2g.r C 1/

n C 1 ¡ f2g.r /

n C 1

®®
®®f2g.r C 1/

n C 1

®® < tolerance (82)

As a norm of a vector, we used a square root of the sum of the
squares of its components.Let .2i /

.r/

n C 1 be an i th component of the
approximate solution vector obtained in an iteration with a number
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r at a moment of time with a number n C 1. Then the criterion (82)
for stopping the iterations will be written as follows:

qP
i

£
.2i /

.r C 1/

n C 1 ¡ .2i /
.r /

n C 1

¤2

qP
i

£
.2i /

.r C 1/

n C 1

¤2
< tolerance (83)

In the example problems considered hereafter, we set toleranceD
1 £ 10¡4 .

Thus, in the problems with the damage progression taken into
account, the algorithm of the Newmark20 time integration scheme,
combined with the direct iteration method of solving the nonlinear
algebraic equations (76), can be summarized as follows:

1) At the � rst time interval [t1 , t2], set the vectors of initial gen-
eralized displacements f2g1 and velocities f P2g1 equal to the values
speci� ed in initial conditions.The vector f R2g1 of initial generalized
accelerations is found from the Eq. (75), where n is set equal to
zero:

[M ]f R2g1 C [C]f P2g1 C [K ]f2g1 C fQg1 D fPg (84)

This is a system of linear algebraic equations with respect to com-
ponents of the vector f R2g1 .

2) At the nth time interval [tn , tn C 1], the vectors f2gn , f P2gn , f R2gn ,
and fQgn are known, and it is necessary to � nd the vectors f2gn C 1,
f P2gn C 1 , f R2gn C 1 , and fQgn C 1. For this purpose, the following algo-
rithm is used:

a) Set the iteration counter r equal to 1, and set the initial
approximation for the vector f2gn C 1 to be a zero vector:

f2g.1/

n C 1 D f0g (85)

b) Evaluate fQg.r/

n C 1, that is, evaluate fQgn C 1 at f2gn C 1 D
f2g.r/

n C 1 and solve a linear system of algebraic equations for the
components of the vector f2g.r C 1/

n C 1 :

[ OK ]f2g.r C 1/

n C 1 D f OFgn ¡ fQg.r /

n C 1 (86)

Evaluate the accelerationvector of the current iteration (iteration
with number r C 1) by the formula

f R2g.r C 1/

n C 1 D 1
¿ 2¯

£
f2g.r C 1/

n C 1 ¡f2gn ¡¿ f P2gn ¡¿ 2
¡

1
2
¡¯

¢
f R2gn

¤
(87)

[Equation (87) is obtained by expressing f R2gn C 1 from Eq. (73).]
Evaluate the velocity vector of the current iteration (iteration with

Fig. 2 Transverse displacement w, at x = L/2, z = ¡¡ h/2, as a function of time, in a sandwich plate dropped on elastic foundation with initial velocity
¡ ¡ 30 m/s. The foundation modulus is 6.7864 £ £ 108 Pa/m (clay); – – –, results of analysis without account of damage; and ——, with damage included.

number r C 1) by the formula

f P2g.r C 1/

n C 1 D f P2gn C ¿ .1 ¡ ° ¿/f R2gn C ¿ 2° f R2g.r C 1/

n C 1 (88)

[Equation (88) is obtained from Eq. (74).]
c) Check if the vectors f2g.r C 1/

n C 1 and f2g.r/

n C 1 satisfy the con-
vergence criterion of equation (83).

If the convergence criterion is not satis� ed, then begin a new
iteration within this time interval, that is, set r D r C 1 and go back
to the step b. If the convergencecriterion is satis� ed, go to the next
step.

d) Set the vector of nodal parameters and the vectors of the
� rst and second time derivatives of the nodal parameters equal to
the corresponding vectors obtained in the iteration at which the
convergence criterion of the step c was satis� ed, that is, set

f2gn C 1 D f2g.r C 1/

n C 1 (89)

f P2gn C 1 D f P2g.r C 1/

n C 1 (90)

f R2gn C 1 D f R2g.r C 1/

n C 1 (91)

for use in the next time step and for computation of stresses at
t D tn C 1 .

e) Computeaveragestresses in all plies of each � nite elementat
t D tn C 1 , using the vectors f2gn C 1 , f P2gn C 1 , and f R2gn C 1, obtained
in step d. Substitute these stresses into the failure criteria. If the
failure occurs in a ply of a � nite element, modify material elastic
constants of this ply, modify the element stiffness matrix [k] and
the nonlinear internal force vector fqgn C 1 D .@Unl=@fµg/n C 1 of the
� nite element to which the damaged ply belongs, and assemble
the global stiffness matrix [K ] and global nonlinear internal force
vectorfQgn C 1 with accountofmodi� cations to the element stiffness
matrices and element nonlinear internal force vectors due to the
damage. Then go to the step b, that is, recompute vectors f2gn C 1,
f P2gn C 1 , and f R2gn C 1 and stresses at the same moment of time.

(When failure occurs, the stress � eld changes instantly due to
the change of material properties.This redistributionof the stresses
may cause additional failure to occur. Therefore, in case of failure,
the time incrementation must be stopped and analysis must be run
again for the same time interval to determine the new failure. If the
new failure does not occur, the analysis can go on to the next time
step.)

If failure does not occur, set n D n C 1, that is, go to the next time
interval.

Analysis goes on for a number of time steps, speci� ed by a user.



PEREL AND PALAZOTTO 1635

Example Problems
In some problems, when the plates are loaded on both the upper

and lower surfaces, or when the plates are on elastic foundations,
transverse compressibility of the sandwich plates can not be ne-
glected. In the proposed � nite element formulation, the transverse
compressibility is taken into account by assuming that the direct
transverse strain "zz is not equal to zero and by including this strain
into the expression for the strain energy. In the following example,
we consider a sandwich plate, with a rigid body on its upper sur-
face, under its impact against an elastic Winkler foundation, and
demonstrate that the change of the plate’s height during this impact
can be captured by the � nite element model. In the � nite element
formulation, the presence of the rigid body on the upper surface is
taken into account by including a kinetic energy of the rigid body
in Hamilton’s principle. Example problems, considered hereafter
are solved with the use of the geometricallynonlinear formulation.
There are 40 � nite elements used in all example problems.

Thus far, the numericalimplementationof the theoryis performed
for the case of cylindrical bending only, which occurs if the width
of the plate is larger than the length and if the load on the surface is
uniformly distributedalong the width. In this case, the stress distri-
bution and stiffness degradation are uniform in the width direction.

Let us consider an example of a sandwich plate with laminated
composite face sheets, made of AS4/3501-6 material, and a honey-
combcore,madeofNomexHRH10-1/8-4.0.The materialproperties
of the face sheets and the core, used in the example problems, are
listed hereafter.

The elastic constants of the face sheets are as follows: E1 D
144:8 £ 109 N/m2, E2 D 9:7 £ 109 N/m2, E3 D 9:7 £ 109 N/m2,
G23 D 3:6 £ 109 N/m2 , G13 D 6 £ 109 N/m2 , G12 D 6 £ 109 N/m2,
º23 D 0:34, º13 D 0:3, and º12 D 0:3.

The material strengths of the face sheets are as follows: XT D
2:17 £ 109 N/m2 , XC D 1:72 £ 109 N/m2, YT D 53:8 £ 106 N/m2,
YC D 205:5 £ 106 N/m2, ZT D 53:8 £ 106 N/m2, ZC D 205:5 £
106 N/m2, S23 D 89:3 £ 106 N/m2 , S13 D 120:7 £ 106 N/m2 , and
S12 D 120:7 £ 106 N/m2, where XT , YT , ZT , XC , YC , and ZC are
the material strengths in tension and compression along the 1, 2,
and 3 directions and S23 , S13, and S12 are the shear strengths in the
23, 13, and 12 planes.

The elastic constants of the core are as follows: E1 D
80:4 £ 106 N/m2, E2 D 80:4 £ 106 N/m2, E3 D 1005£ 106 N/m2,
G23 D 75:8 £ 109 N/m2 , G13 D 120:6 £ 106 N/m2 , G12 D 32:2 £
106 N/m2, º23 D 0:02, º13 D 0:02, and º12 D 0:25.

The material strengths of the core are as follows: ZC D 3:83 £
106 N/m2, S23 D 142:3 £ 106 N/m2 , and S13 D 177:9 £ 106 N/m2.

Fig. 3 Transverse displacement w (at x = L/2, z = ¡¡ h/2) as a function
of time in a sandwich plate dropped on elastic foundation with velocity
¡ ¡ 30 m/s. The foundation modulus is 6.7864 £ £ 107 Pa/m (sand); – – –,
results of analysis without account of damage; and ——, with damage
included.

Both face sheets have the same thickness 0.0025 m, and each of
them consists of 25 plies with 0

90
-deg layup. The thickness of the

core is 0.04 m. On the upper surface of the plate there is a rigid body
of mass 500 kg, located symmetrically with respect to the middle
of the plate’s span, that has the length 0.2 m.

The modulus of the elastic Winkler foundation in the exam-
ple problem, represented by Fig. 2, is 6:7864£ 108 Pa/m (clay).
A time increment, used in numerical integration of equations of
motion (72), is chosen to be 1 £ 10¡4 s. We consider a plate falling
on the elastic foundation with velocity ¡30 m/s. The analysis of
the response [time integration of the equations of motion (72)] in
this and all subsequent example problems begins at the moment of
time when the falling plate touches the elastic foundation.Figure 2
shows the transverse displacementof the lower surface of the plate
as a function of time, computed with account of damage (solid line)
and without account of damage (dashed line). In the analysis with
the account of damage, the amplitude of vibration is higher. This is
expected because the stiffness of the damaged structure is lower.

Figure 3 shows the transverse displacement of the plate falling
on the foundation with the smaller modulus, 6:7864£ 107 Pa/m.

Fig. 4a Stress ¾xx, at x = L/2, z = ¡¡ h/2, as a function of time in a sand-
wich plate dropped on elastic foundation with initial velocity ¡ ¡ 30 m/s.
The foundation modulus is 6.7864 £ £ 107 Pa/m (sand); – – –, results of
analysis without account of damage; and ——, with damage included.

Fig. 4b Stress ¾zz, at x = L/2, z = ¡¡ h/2, as a function of time in a sand-
wich plate dropped on elastic foundation with initial velocity ¡ ¡ 30 m/s.
The foundation modulus is 6.7864 £ £ 107 Pa/m (sand); – – –, results of
analysis without account of damage; and ——, with damage included.
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Fig. 5 Transverse displacement (at x = ¡¡ L/2) as a function of time in
a sandwich plate, with a mass on its upper surface, dropped on elas-
tic foundation with initial velocity ¡¡ 1 m/s. The foundation modulus
is 6.7864 £ £ 107 Pa/m (sand); ——, displacement of the lower surface;
and – – –, displacement of the upper surface. (Under this initial velocity,
damage does not occur.)

All other conditions are the same as in the preceding example. We
see that, in the case of the lower modulus of the foundation, the
amplitude of the transversedisplacement is higher. So, the effect of
the foundation stiffness is taken into account properly.

Figures4a and 4b shows resultsof stressanalysiswith andwithout
accountof damageprogressionof the same sandwichplate under the
impact against the elastic foundation.All conditionsof the problem
are the same as in the preceding example. As seen in Fig. 4a, when
the � ber breakageoccurs, the in-planedirect strain ¾x x reducesdras-
tically, due to the degradationof the material characteristics,associ-
ated with the in-plane direction.At the moment of time t D 0:016 s,
when stress ¾zz at the lower surface of the damaged plate (i.e., force
of interaction between the plate and the elastic foundation per unit
area) reaches a zero value (Fig. 4b), the plate loses contact with
the elastic foundation and bounces up into the air. Therefore, this
and all other graphs are to be considered only for the time interval
during which the stress ¾zz at the lower surface of the plate is not
positive (time interval 0 · t · 0:016 s for Fig. 4b), unless the plate
is glued to the elastic foundation at the moment of initial contact
(i.e., is forced to stay in contact with the foundation). If the plate is
forced to stay in contact with the foundation, all of the graphs are
correct for any time duration.

Figure 5 shows the transversedisplacementof the plate falling on
the foundation with the smaller initial velocity, ¡1 m/s. All other
conditions are the same as in the preceding example. Comparison
of Figs. 3 and 5 shows that the effect of the initial velocity on the
response is captured properly: the lower initial velocity causes the
lower amplitudeof vibration.Figure 5 shows also that the amplitude
of the transverse displacement of the upper surface is higher, and
this shows the capabilityof the model to capture the compressibility
of the plate in the transverse direction.

Conclusions
The theory of the sandwich plate, presented in this paper, has

a wide range of applicability. It can be used for analysis of sand-
wich plates with large and small thickness-to-length ratios, with
thick and thin face sheets, with transversely rigid and transversely
� exible face sheets and cores. The proposed � nite element formu-
lation allows one to compute accurately all stress components,both
in-plane and transverse, without using � nite element models with
three-dimensionalelements. The geometrical nonlinearity of the � -
nite element formulation allows for a nonlinear transient analysis
of a sandwich composite plate undergoing moderate rotations. The
algorithm of taking account of damage progression in a dynamic
problem is incorporated into the computational scheme, based on
the geometrically nonlinear formulation.

Appendix: Pointwise Equilibrium Equations
Variationally Consistent with the von Kármán

Strain–Displacement Relations
In theequationsof thisAppendix,the superscriptsk, whichdenote

the numbers of the sublaminates,will not be used. These equations
have a very general character, and their validity is not limited to the
layerwise plate theory presented in this paper.

To derive pointwise equations of motion, consistentwith the von
Kármán13 strain–displacement relations, let us substitute variations
of the von Kármán strain–displacementrelations,written in indicial
notations,

"®¯ D 1
2 .u®;¯ C u¯;® C u3;®u3;¯ /; .®; ¯ D 1; 2/ (A1)

"i3 D 1
2
.u i;3 C u3;i /; .i D 1; 2; 3/ (A2)

into the virtual work principle
Z Z

.V /

Z
¾i j ±"i j dV D

Z Z

.V /

Z
. NFi ¡ ½ Ru i /±u i dV C

Z Z

.S/

Nt i ±ui dS

(A3)

where NFi are components of the body force per unit volume, ½ is
density,and Nt i are componentsof the surface traction.The variations
of these strains of Eqs. (A1) and (A2) have the form

±"®¯ D 1
2 .±u®;¯ C ±u¯;® C u3;®±u3;¯ C u3;¯ ±u3;®/

.® D 1; 2I ¯ D 1; 2/ (A4)

±"i3 D 1
2
.±u i;3 C ±u3;i / .i D 1; 2; 3/ (A5)

Expression ¾i j ±"i j can be presented in the form

¾i j ±"i j D ¾®¯ ±"®¯ C 2¾®3 ±"®3 C ¾33±"33

.® D 1; 2I ¯ D 1; 2I i D 1; 2; 3I j D 1; 2; 3/ (A6)

When we substitute Eqs. (A4) and (A5) into Eq. (A6), we get

¾i j ±"i j D ¾i j ±u i; j C ¾®¯u3;®±u3;¯

.® D 1; 2I ¯ D 1; 2I i D 1; 2; 3I j D 1; 2; 3/ (A7)

If one substitutesexpression(A7) into the left-handside ofEq. (A3),
one gets
Z Z

.V /

Z
¾i j ±"i j dV D

Z Z

.S/

[¾® j n j ±u® C .¾3 j n j C ¾®¯u3;®n¯ /±u3] dS

¡
Z Z

.V /

Z
f¾® j; j ±u® C [¾3 j; j C .¾®¯ u3;®/;¯ ]±u3g dV

.® D 1; 2I ¯ D 1; 2I i D 1; 2; 3I j D 1; 2; 3/ (A8)

where n1 , n2 , and n3 are components of the outward unit normal
vector to the surface. The substitution of expression (A8) into the
virtual work principle (A3) yields

0 D
Z Z

.V /

Z
¾i j ±"i j dV ¡

Z Z

.V /

Z
. NFi ¡ ½ Rui /±u i dV ¡

Z Z

.S/

Nt i ±ui dS

D
Z Z

.S/

[.¾® j n j ¡ Nt® /±u® dS C .¾3 j n j C ¾®¯u3;®n¯ ¡ Nt 3/±u3] dS

¡
Z Z

.V /

Z
f.¾® j; j C NF® ¡ ½ Ru® /±u® C [¾3 j; j C .¾®¯u3;®/;¯

C NF3 ¡ ½ Ru3]±u3g dV .® D 1; 2I ¯ D 1; 2I j D 1; 2; 3/

(A9)
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If one equates to zero the coef� cientsof variationsof displacements,
one obtains the equations of motion

¾® j; j C NF® D ½ Ru®; ¾3 j; j C .¾®¯ u3;® /;¯ C NF3 D ½ Ru3

.® D 1; 2I ¯ D 1; 2I j D 1; 2; 3/ (A10)

and natural boundary conditions

¾® j n j D Nt®; ¾3 j n j C ¾®¯ u3;®n¯ D Nt 3 at S¾

.® D 1; 2I ¯ D 1; 2I j D 1; 2; 3/ (A11)

where S¾ is a part of the surface on which displacement constraints
are not imposed. Equations of motion (A12) in expanded form are

¾x x;x C ¾x y;y C ¾xz;z C NFx D ½ Ru (A13)

¾yx ;x C ¾yy;y C ¾yz;z C NFy D ½ Rv (A14)

¾zx ;x C ¾zy;y C ¾zz;z C @

@x
.¾x x w;x C ¾yx w;y /

C @

@y
.¾x y w;x C ¾yyw;y / C NFz D ½ Rw (A15)

The boundary conditions (A11) in expanded form are

¾x x nx C ¾x yn y C ¾x znz D Nt x (A16)

¾yx nx C ¾yyn y C ¾yznz D Nt y (A17)

¾zx nx C ¾zyn y C ¾zznz C ¾x x w;x nx

C ¾yyw;yn y C ¾x y.w;x n y C w;y nx / D Nt z (A18)

In the postprocessingstageof the � nite elementanalysis,thecompu-
tation of the transversestresses is done with the use of the pointwise
equations of motion (A13–A15), variationally consistent with the
von Kármán13 strain-displacementrelations (2–7).
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