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Finite Element Formulation for Thick Sandwich
Plates on an Elastic Foundation
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To construct a plate theory for a thick transversely compressible sandwich plate with composite laminated face
sheets, the authors make simplifying assumptions regarding distribution of transverse strain components in the
thickness direction. It is assumed that the transverse strains (i.e., €,;, €,;, and &;;) do not vary in the thickness
direction within the face sheets and the core, but can be different functions of the in-plane coordinates in different
sublaminates (the face sheets and the core). An algorithm, which takes account of damage progression in dynamic
problems, is incorporated into the computational scheme based on the geometrically nonlinear formulation and is
applied to failure analysis of a sandwich plate under ground impact. In the finite element analysis of sandwich plates
with small thickness-to-length ratios, the shear locking phenomenon does not occur. The model of the sandwich
plate, presented in this paper, does not require many degrees of freedom in the finite element computations and
has a wide range of applicability: It can be applied to the sandwich plates with a wide range of ratios of thickness
to the in-plane dimensions, with both thin and thick face sheets (as compared to the thickness of the core) and to
the sandwich plates with both transversely rigid and transversely compressible face sheets and cores.

Introduction

ANDWICH structures are used in a variety of load-bearing ap-
plications. Sandwich plates have a well pronouncedzigzag vari-
ation of the in-plane displacementsin the thickness direction,due to
their high thickness-to-lengthratios and large difference of values
of elastic moduli of the face sheets and the core. Such character-
istics of the sandwich plates make it necessary to use a layerwise
approachin their analysis, the idea of which is to introduce separate
simplifying assumptions regarding the through-thickness variation
of displacements, strains, or stresses within each face sheet and
the core. Many researchers studied the sandwich plate with thick,
lightweight, vertically stiff cores, and thin rigid face sheets, using
discrete-layer (or layerwise) models. Most of the layerwise mod-
els of such structures are based on the piecewise linear through
the thickness in-plane displacement approximations in addition to
constant (though-the-thickness) transverse displacements.“9
The modern cores are usually made of plastic foams and non-
metallic honeycombs, like Aramid and Nomex. These cores have
properties similar to those used traditionally (for example, metallic
honeycombs), but due to their transverse compressibility (i.e., abil-
ity of such cores to change height under applied loads) the direct
transverse strain ¢,, becomes important. Therefore, the models of
the sandwich plates with the cores made of plastic foams or non-
metallic honeycombs must not exclude the change of height of the
core. Frostig and Baruch!® developed a theory of a sandwich beam
with thin face sheets in which account is taken of transverse com-
pressibility of the core, and the longitudinal displacement in the
core varies nonlinearly in the thickness direction. In this theory,
the longitudinal displacement in the face sheets varies linearly in
the thickness direction, and the transverse displacement of the face
sheets does not vary in the thickness direction, that is, the transverse
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direct strain €, in the face sheets is assumed to be equal to zero in
the expression for the strain energy. The transverse shear strain ¢,
in the face sheets is also considered to be negligibly small in the ex-
pression for the strain energy that is used for variational derivation
of the differential equations for the unknown functions. The trans-
verse shear stress in the face sheets can be computed by integration
of the pointwise equilibrium equations o, , +0,,, =0.

Under certaincircumstances,when the face sheets are thick, when
the plate is loaded by a concentrated or partially distributed load,
or when the plate is on an elastic foundation, taking account of
the direct transverse strain ¢, in the face sheets and the transverse
shear strain ¢, in the face sheets in the expression for the strain
energy allows one to obtain a higher accuracy of the stress com-
putation. Besides, to achieve a high accuracy of stress computation
in the thick face sheets, a model for such a plate must assume or
lead to the nonlinear through-the-thickness variation of the in-plane
displacements, not only in the core, but also in the face sheets.

Construction of a computational scheme that satisfies these re-
quirements can be approached, for example, with the help of the
layerwise laminated plate theory of Reddy,!! which is a generaliza-
tion of many other displacement-based layerwise theories of lami-
nated plates. In this theory, the displacementfield in the kth layer is
written as
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where u( )(x y, t) v( )(x y, t) and w( )(x y, t) are the unknown
functlons and ¢j (z) and w (z) are chosen to be Lagrange in-
terpolation functions of the thlckness coordinate, to provide the
required continuity of displacements and discontinuity of the trans-
verse strains across the interface between adjacent thickness sub-
divisions. This theory allows one to achieve a high accuracy of
the transverse stress computation in the composite laminates, but



1628 PEREL AND PALAZOTTO

for this purpose it requires a large number of thickness subdivi-
sions of the laminate. This leads to a large number of the unknown
functions and degrees of freedom in a finite element model. In ef-
fect, the finite element model, based on this generalized layerwise
laminated plate theory, is equivalent to the three-dimensional fi-
nite element model. To reduce the number of the unknown func-
tions in the layerwise model of a laminated plate, one can use the
concept of a sublaminate (i.e., make the number of thickness sub-
divisions less than the number of material layers) and deal with
the material properties, averaged through the thickness of a sub-
laminate. In a model of the sandwich plate, it is natural to choose
three sublaminates: the two face sheets and the core. With such a
small number of sublaminates, the nature of assumptions on the
through-the-thickness variation of displacements can have a large
effect on the accuracy of the computed stresses. Besides, the actual
through-the-thickness variation of displacementscan depend on the
character of applied loads and boundary conditions. Therefore, in
a layerwise model of the sandwich plate with only three sublami-
nates, it is desirable to have flexibility in the choice of the functions
that represent through-the-thickness variation of displacements. Of
course, the Lagrange interpolation polynomials, which represent
the thickness variation of the displacements within a sublaminatein
the Reddy’s!! layerwise theory, can be chosen to be of any desired
degree, but such an increase of the degree of the Lagrange interpola-
tion polynomials leads to the increase of the number of the unknown
functions.

In the present paper, we construct a computational scheme for
analysis of the sandwich plate in which the simplifying assump-
tions that lead to a plate-type theory are made with respect to the
variation of the transverse strains in the thickness direction of the
face sheets and the core of the sandwich plate. The displacements
are then obtained by integrationof these assumed transverse strains,
and the constants of integration are chosen to satisfy the conditions
of continuity of the displacements across the borders between the
face sheets and the core. In such a method, the required continuity
of displacements in the thickness direction is satisfied regardless
of the assumed type of through-the-thickness distribution of the
transverse strains, and the transverse flexibility of the plate can be
taken into account. This leads to a larger number of choices of sim-
plifying assumptions about the variation of strains (and, therefore,
displacements) in the thickness direction and, therefore, allows a
better adjustment of the computational scheme to the conditions
under which the sandwich plate is analyzed by a layerwise method
with only three sublaminates (being the face sheets and the core).
The transversestresses are computed by integrationof the pointwise
equilibriumequations that leads to satisfactionof conditionsof con-
tinuity of the transverse stresses across the boundaries between the
face sheets and the core and satisfaction of stress boundary condi-
tions on the upper and lower surfaces of the plate.

In the present paper, we consider the model based on the sim-
plest of such assumptions that do not ignore in the expression for
the strain energy the transverse shear and normal strains in the face
sheets. We assumethat the transversestrains do not vary in the thick-
nessdirectionwithin the face sheets and the core, but can be different
functions of the in-plane coordinatein the face sheets and the core.
In the postprocess stage of analysis, these first approximations of
the transverse strains can be improved by substituting the trans-
verse stresses, obtained by integration of the pointwise equations of
motion (Appendix) into the strain-stress relations. These improved
values of the transversestrains vary in the thicknessdirectionand are
sufficiently accurate as compared to those of the known exact solu-
tions, based on the linear three-dimensionaltheory.'? In the theory,
discussedin this paper, the transverse displacement, obtained by in-
tegration of the assumed transverse normal strain, varies linearly in
the thickness direction within a sublaminate. (Therefore, transverse
compressibility of the plate is taken into account.) The in-plane dis-
placement, obtained by integration of the assumed transverse shear
strains, varies quadratically within the thickness of a sublaminate.
The developed theory does not require many degrees of freedomin
finite element models, despite its ability to capture the transverse
flexibility of the plate and nonlinear through-the-thickness variation
of the in-plane displacements.

Three-Dimensional Formulation

The sandwich plate is divided into three conventionallayers (sub-
laminates): the two face sheets and the core. Within each sublami-
nate, the simplifying assumptions of the plate theory are made sep-
arately. In the following text, the superscriptk denotes the number
of a sublaminate: k = 1 denotes the lower face sheet, kK =2 denotes
the core, and k = 3 denotes the upper face sheet (Fig. 1).

In the subsequenttext, both indicial and nonindicial notations for
the displacements will be used interchangeably without a prelimi-
nary notice, the correspondencebetween them being established as
follows: u; =u, u, =v, and u3 = w.

As energy-conjugate measures of strain and stress, we use the
Green-Lagrangestraintensor and the second Piola-Kirchhoffstress
tensor. We limit our research to the important case of small strains,
moderate displacements (of the order of thickness of the plate), and
moderaterotations (10-15 deg). This means that of all of the higher-
order terms in the Green-Lagrange strain-displacementrelations

g =3y +up; +ugug ;) )

only us 34 (o, B=1,2) are not negligible compared to u,;
(@=1,2;i=1, 2, 3).1:13 Therefore, the strain-displacement re-
lations become
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Now we need to find the simplified equations of motion and bound-
ary conditions, such that their accuracy corresponds to the accu-
racy of the adopted von Karmén!? strain-displacement relations.
These equations of motion are used for computation of the trans-
verse stresses in the postprocessing stage of the finite element anal-
ysis. We receive the equations of motion and boundary conditions,
consistentwith the von Karmdn strain-displacementrelations (2-7),
using the virtual work principle (see Appendix). The equations of
motion are written for each of the three conventional layers: the
upper and lower face sheets and the core. The boundary conditions
are applied to the upper and lower surfaces of the plate and to the
interfaces between the face sheets and the core, with the result that
at the lower surface,
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Fig.1 Coordinate system and notations for the sandwich plates; axis
z is in the thickness direction, % is a thickness of the whole plate, and ¢
is a thickness of the core.
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and at the interfaces,

1 2 1 2
oM (2) =P (22), 0.V (22) = 02 (z2)

0 0(z2) =02 (22) (10)
0 (z3) =0 (z3), 0.7 (z3) = 07 (z3)

0 P(z3) =0 (23) (1)

In the laminate coordinate system (x,y,z), whose axes are
aligned with the sides of the plate, the stress-strain relations for
an orthotropic material have the form!!
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or

{o) =IClfe) (13)

where C;; are the elastic coefficients, referred to the laminate coor-
dinate system.

Inaddition, the displacementsmust be continuousat the interfaces
between the faces and the core:

I
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Two-Dimensional Plate Theory

Simplifying Assumptions of the Plate Theory

To construct a two-dimensional plate theory, we make simpli-
fying assumptions regarding a distribution of the transverse strain
components in the thickness direction. We assume that within the
face sheets and the core the transverse strains do not depend on the
z coordinate, but they can be different functions of coordinates x
and y and time ¢ in different face sheets and the core:

effz) = efé)(x, v, 1), e® = e;kz)(x, y, 1)

yz

e =B, y,1), (k=1,2,3) (15)
where the superscriptk denotes the number of a sublaminate: k = 1
denotes the lower face sheet, k =2 denotes the core, and k =3 de-
notes the upper face sheet. Accuracy of the theory, based on these
assumptions, is studied in the paper of Perel and Palazotto.'

The assumed transverse strains of Eqs. (15), together with dis-
placements of the middle surface of the plate

vo(x, y, 1) = v?

uo(x, y, 1) = u®

z=0"

z=0

w®

wU(‘x7y7t)E =0 (16)

are the unknown functions of the problem that will be computed by
the finite element method. Therefore, all displacements, strains, and
stresses must be expressed in terms of these functions.

Displacements in Terms of the Unknown Functions

To obtain expressions for the displacements in terms of the
unknown functions ¢®, e®, e® wu,, vy, and wy, the strain-
displacementrelations (5-7) are integrated with the following result:
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It can be verified easily that these expressions for the displacements
are continuousacross the boundariesbetween the faces and the core,
that is, at z =z, and z = z3.

Strains in Terms of the Unknown Functions

Expressions for the in-plane strains (%), (!, and () in terms
of the unknown functions are obtained by substituting expressions
(17-25) for displacements in terms of the unknown functions into
the strain-displacement relations (2), (3), and (4). The transverse

strains ¢®), e®_and ¢*) are the unknown functions themselves.

Extended Hamilton’s Principle, Written for This Specific Problem

To derive either differential equations for the unknown functions
with boundary conditions,or the finite element formulation,one can
use the extended Hamilton’s principle

1 n
6/ (T — ) dt +/ S'W.. dt =0 (26)
1 n

where T is a kinetic energy of the system, IT is a total potential
energy of the system, and §' W, is a virtual work of external non-
conservative forces. Therefore, the extended Hamilton’s principle
for the sandwich plate on an elastic foundation can be written as
follows:

n
3 / [(kinetic energy of plate) — (strain energy of plate)
n

— (strain energy of elastic foundation)

— (potential energy of plate in gravity field)] d¢

n
+ / (virtual work of damping forces) dt
n

n
+ / (virtual work of surface forces)dt = 0 27)
1

To derive the differential equations for the unknown functions with
the boundary conditions, or to obtain a finite element formulation,
all terms in the Hamilton’s principle (27) need to be written in terms
of the unknown functions u, vo, wo, e, e{V, eV, @ £ &,
e, ES)’ and . ’ )
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Kinetic Energy of the Sandwich Plate

When it is considered that the mass density of the face sheets is
constant, kinetic energy of the lower face sheet, core, and the upper
face sheet can be written as follows:

. T .
PG) a®

T® _ %pac) /// 5® SICN SN
W® W®

(V)

k=1,2,3)

(28)
where dots over the letters denote partial derivatives with respectto
time. The displacements in Eq. (28) are expressed in terms of the
unknown functions by formulas (17-25). The kinetic energy of the
sandwich plate is the sum of kinetic energies of the face sheets and
the core:

T=TY4+T®47T® (29)

Strain Energy of the Sandwich Plate

The face sheets of a sandwich plate are made from composite
laminates, which are built up of fiber-reinforced plies. The orienta-
tion of the fibers can vary from ply to ply, and, therefore, values of
the stiffness coefficients C; ; in the Hooke’s law (referred to the lam-
inate coordinate system) can vary from ply to ply in the face sheets.
Let us introduce the following notation for a stiffness coefficient
in the Hooke’s law for a ply of the lower face sheet, in the laminate
coordinate system:

“c{y (30

where the right superscript (1) denotes that a stiffness coefficient is
associated with the first sublaminate, that is, the lower face sheet,
the left superscripta is a number of a ply in a lower face sheet, and
subscriptsi and j denote a position of the stiffness coefficientin the
stiffness matrix. The stiffness matrix with components®C, [(.1) will be
denotedas [CV]. Thus, the strain energy of a lower face sheet’s ply
with a number « is

S T TR P

)

where V) is volume of a ply with number «, of the lower face
sheet, and the column matrix of strains {¢"'} is defined as follows:

T
Ml — (D (1) (D (1) (1) (1)
{e } = Le” ey & 25yZ e, ZEXyJ (32)

Unlike the material coefficients "‘C[(jl), the strains do not have a
subscript «, which denotes a number of a ply of the lower face
sheet, because assumptions about through-the-thicknes variation
of strains are made for the whole lower face sheet, not for each
individual ply of the lower face sheet. Therefore, each strain in the
lower face sheet, as a function of the z coordinate, is represented
with a single expression through the thickness of the lower face
sheet.

The strain energy U of the whole lower face sheet is a sum of
strain energies of the plies of the lower face sheet:

n

vh =3y v (33)

a=1

Similarly, one can write an expression for the strain energy of the
upper face sheet U®. The core of the sandwich plate is considered
to be a homogeneous orthotropic medium. However, the failure in
the core can be distributed nonuniformly in the thickness direction.
As a result of this, in the presence of failure, the coefficients C;;
of the stress-strain relation of the core can vary in the thickness
direction. To take account of this, the core is nominally divided
into layers parallel to the x—y plane, such that within each layer the
coefficients of the stress-strain relation can be considered approxi-
mately constantin the thickness direction. Thus, the core is treated
as a laminated plate, the same way as the face sheets. The strain

energy of the sandwich plate is the sum of the strain energies of the
core and the face sheets

U=0"+U®+U® (34)

Potential Energy of the Sandwich Plate in the Gravity Field

The potential energy of the sandwich plate in the gravity field I,
is equal to the sum of potential energies of the lower face I1{", the
core I1$, and the upper face 1}

M, ="+ 02+ 35)

B L i+
Hé’o = ,O(k)g/ / / w® dz dx dy (36)
0 Y0 Yz

Strain Energy of Elastic Foundation
The strain energy of the elastic foundation, modeled as a Winkler
foundation, is defined by the expression

1 (B ("
- 1
U; 2/0 /U s(x)(w

where s(x) is a modulus of the foundation.

where

)2 dx dy (37)

z=z1

Virtual Work of Surface Forces

It is assumed that the upper and lower surfaces of the plate are
loaded by distributed forces in the transverse direction (along the
z axis). Letg, (x,y,t) and g; (x, y, t) be forces per unit area in the
transverse direction, acting on the plate’s upper and lower surfaces,
respectively. Then the virtual work §'W of these forces is

B L
6’Ws=// qu(x, y, Déw®
0 0
B L
+// q(x,y,Hw®
0 0

Virtual Work of Damping Forces

The damping force per unit volume will be denoted as @. We will
consider, because it is generally accepted, that the damping force is
proportional to the velocity. Then, for the kth sublaminate, we can
write the following expression for the column matrix of components
of the damping force per unit volume:

dx dy

z=24

. dxdy (38)

oW e
oWt = _ﬂac)p(k)i p® (39)
ok w®

where 8% and p® are, respectively,a damping parameter and mass
density of the kth sublaminate. The virtual work of the damping
force in the kth sublaminate can be written as follows:

B pL rzi4
0 0 Zk

The virtual work of the damping forces in the whole sandwich plate
is the sum of the virtual works in the face sheets and the core:

®
M(k) T CD,\'
p® Pk

Sw® d®

)
) dzdxdy (40)

SW, =W + W3 + W (41)

The extended Hamilton’s principle, written in terms of the un-
known functions, can be used for deriving either differential equa-
tions and boundary conditions for the unknown functions, or it can
be used for a finite element formulation. In the following section,
we will develop a finite element formulation for the sandwich plate
in cylindrical bending.
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Finite Element Formulation for Cylindrical Bending

Let us call the dimension of the plate in the x direction the length
and the dimension in the y direction the width. If the width of the
plateis much larger than its length, and if the load intensity does not
vary in the width direction, then the displacements do not depend
on the y coordinate:

u=u(x,?z), v=1uv(x,2), w=w(x,2z) (42)
Such a condition is called a generalized plane strain or cylindri-
cal bending. In case of cylindrical bending, the unknown functions
depend only on the x coordinate and time. Therefore, the two-
dimensional plate-bending problem reduces to the one-dimensional
problem. Then, all derivativeswith respectto the y coordinatevanish
in all formulas of the preceding sections.

Hereafter, we will consider a sandwich plate with an isotropic
or transversely isotropic core and with face sheets being composite
laminates of 0- and 90-deg plies orientation. In this case, at each
point of the plate there is a plane of elastic symmetry parallel to the
x-zcoordinateplane,and, therefore,the conditionof the generalized
plane strain reduces to the condition of pure plane strain,'* that is,

u=u(x,?z), w = w(x, 2), v=0 (43)
and all strain components, associated with the y direction, are equal
to zero:

Eyy = 0» Exy = 0» &y, = 0 (44)

Therefore, the unknown functions are

e

Uo, Wo, Eilz),
& ez e, & (45)
To perform a finite element formulation, we represent the

unknown functions e®) (x, 1), e®(x, 1), uo(x, 1), and wy(x, 1) by
piecewise interpolation polynomials:

u(0)
uy =M, M,] (46)
u(l)
£®(0)
Eikz) =M, M,] ) 47)
el ()
where
M =1-x/I, M, =x/1 (48)
and [ is a length of a finite element
wo (0)
dw
—©
wo =[Ny N N; Ny (49)
wo(l)
dwU
—
o )
£2(0)
ds?
O
Eélé) =[Ny N, N; N,J (50)
e ()
de®
Z2 l
e Q)]

where
N1=1—3x2/12+2x3/l3, N2=)c—2)cz/l—}—x3/l2

N3=3x2/12—2x3/l3, N4=—xz/l—}—x3/l2 (€20)

Here and further in this section, devoted to the finite element formu-
lation,itis implied for simplicity of notationsthatx is a coordinatein
the element (local) coordinate system, the origin of which coincides
with a left node of a finite element.

Thus, the combined finite element has 24 degrees of freedom.
At each node there are 12 nodal parameters: uo, &V, £2, @, wy,
dwo/dx, eD, deD/dx, e?, deP /dx, ¢, and del? /dx.

From the extended Hamilton’s principle (27), written in terms
of nodal parameters d;, i =1, 2, ..., 24, the following equation of
motion of a finite element in terms of the nodal parameters can be
derived:

. aU,

{dy + [kl {d) +—== {1} (52

(24 x 24)(24 x 1) o{d} 24 x1)
24x1)

m] {d} + [c]

(24x24) 24 x1) (24 x24)(24x 1)

In this equation, a part Uy, of the strain energy is due to the nonlinear
terms in the strain-displacementrelations (geometric nonlinearity of
the von Kérmén!® type). The expression for U, is not a quadratic
form of the nodal variables; therefore, the vector dU,,/d{d} is not
linear with respectto the nodal variables. The matrices thatenterinto
Eq. (52) were derived with the use of exact integration, performed
with a program for symbolic computation, MAPLE. In our finite
element analysis, the global damping matrix is not assembled from
the element damping matrices. Instead, the proportional damping
model is used, in which the global damping matrix [C] is presented
as a linear combination of the global stiffness and mass matrices.
[Therefore, the virtual work of the damping forces, as presented by
Eqgs. (35-37), is not used in our finite element formulation, but has
only a theoretical importance in formulating the two-dimensional
plate-type theory.] Thus,

[C] = a[K] + o2 M] (53)

where o and § are constants to be determined from two given loga-
rithmic decrements of damping, §; and d,, which correspond to two
unequal frequencies of vibrations w, and w, by the formulas

Siw; — Sw
o = 1 12 222 (54)
”(“)1_0)2)

W (01 — 1)

> 2
”(“)1 0)2)

(55)

oy =

The assembled equations of motion of the whole structure were
solved by direct integration with the use of the Newmark method
(see Ref. 11).

In the postprocessing stage of the finite element analysis, the
in-plane stresses 0.}, o)), and o) are computed with the use of

the constitutive equations, which, in the case of pure plane strain
(cylindrical bending), take the form

k) _ ~&) (k) ~ (k) (k)

Ovx = Cll Exx + C13 Ezz (56)
k) — &) (k) ~ (k) (k)

U,vy - Cl(: Exx + C36 Ezz (57)
k) _ k) (k) ~ (k) (k)

o, =Che, +Che (58)

whereas the transverse stresses 0%, ¢ ®, and ¥ need to be com-
puted by integration of the pointwise equations of motion, which, in
the case of pure plane strain and under the assumption that the plate
is perpendicularto the direction of gravity force, take the form

o), +ol) = pWu® (59)

o, +ol =0 (60)

o)+l + L () - Py g0, k=123
61)

If one integrates Egs. (59-61) and satisfies stress boundary con-
ditions on the lower surfaces [Egs. (8)] and conditions of continuity
of the transverse stresses [Egs. (10) and (11)], one gets
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U’X(l) = / (p(l)ﬁ(l) — HU’X(}Y?X) dz (Zl <z= Zz) (62)

21

2
2 -1 H_(1 2) (2 H_(2
o= [ e oz [ (o0 o2 )
z1

z 2

(2 <72 =<123) (63)

22 23
3 1) (1 H 1 2) (2 H_(Q2
o® = / (p( M — UX(X?X) dz + / (,o( i@ — UX(X?X) dz
21

2

; / (P —"6® )de  (nsi<w) (6D
3
oD(x,z,1) = —/ oV dz (65)
21
crf,?(x,z,t):—/ Ho dz—/ Ao® dz (66)
21 22
22 3 z
oPen==[ Mo ac— [ o g~ [0, 4
21 22 3
67)
(1) q ) (@1 9 H_(1), (1) (1
ol =——+ [ [pV(@"+g) - ("o wl) —ol), | dz
2z b - ax XA 5 A ZX,X
(68)

ot ==t [0 4 - ) o, |

w0 - o) o | )

o0 ==t [0 ) = ) o, |
o I R R O RN I

+ / |:p<3>(1j}<3> + g) _ i(Hch(i)wg)) — US')X:| dz  (70)

0x
23

In Egs. (62-70), the in-plane stresses with the left superscripts H
(which stands for Hooke’s law) are computed with the use of the
Hooke’s law, that is, from equations (56-58). As can be seen from
Eqgs. (62-70), the inertia and nonlinear terms are taken into account
in the expressions for the transverse stresses.

With the use of Eqs. (56-58) and (62-70), all stress components
can be expressed in terms of the unknown functions ug, wy, &',
e, e@ P &3 and e . The expressionsfor the stresses in terms
of the unknown functions are not shown explicitly because of their
large size. Examples of such expressions are shown in the paper of
Perel and Palazotto.!?

The values of ug, wy, dwy/dx, e®), 3¢ /9x, and ¢®) are most
accurate at the nodes of the finite element mesh (because these
variables are carried as nodal variables), and for computation of
stresses, they can be taken directly from the finite element solu-
tion. The second derivatives d*w/dx* and 3*¢%)/3x?, computed
from interpolation polynomials, used in the finite element formu-
lation, are most accurate at the Gauss points. (The locations of the
minimal-error points of the derivativesof the field variables within a
finite element were calculated with the use of a method presented by
Akin."*) The third derivatives 3°w,/dx* and 3°¢{¥’ /9x?, computed
from the interpolation polynomials, are constant over the element’s
length and are most accurate in the middle of the finite element. The
derivatives 0*wo/dx*, 9%e2 /0x*, 8%uy/0x*, and 3*¢® /9x?, taken
as derivativesof the interpolationpolynomials, which are used in the

finite element formulation, are equal to zero, which can be wrong
for a particular problem. Therefore, these derivatives are computed
numerically at the nodal points by a finite difference scheme, using
the nodal values of wy, £®), uo, and %), obtained from the finite
element solution. Thus, there are no points within the finite element
where all of the derivatives of the field variables are most accurate
simultaneously. Therefore, to compute stresses, the average (over
the element’s length) values of the field variables and their deriva-
tives are evaluated, because average values at the points where these
quantities are most accurate, and then substituted into the expres-
sions for the stresses, producing average (over the element’s length)
values of stresses.

The computation of the transverse stresses from the equations of
motion allows one to satisfy the stress boundary conditions on the
upper and lower surfaces of the plate and the conditions of conti-
nuity of the transverse stresses at the interfaces between the faces
and the core of the sandwich plate and between the plies with dif-
ferent material properties within the faces.!> The computation of
the transverse stresses by integration of the pointwise equilibrium
equations is demonstrated, for example, in the work by Reddy!!
and some other works included in the bibliography therein. That the
computation of the transverse stresses by integration of the point-
wise equilibrium equations (or equations of motion) allows for the
satisfaction of the stress boundary conditions not only on one of
the external surfaces (upper or lower), but on both of them, was
mentioned in the work of Perel and Palazotto.'?

In most common cases of boundary conditions, that is, simply
supported, clamped, and free edges of the plate, the nodal values
of the transverse strains (), e, ¢@, &2, ¢? and ¢ and their
derivatives need not be specified at the edges.

Time Integration with Account of Damage Progression

When a failure occurs in a single layer of a composite laminate,
a composite structure can still carry a load. Therefore, a subsequent
failure prediction is required to determine a dynamic response of
the structure in the presence of some damage. This problem is dealt
with by assuming that, within a finite element where the damage
occurs, the original material characteristics of the damaged ply can
be replaced with degraded material characteristics. The degraded
material properties are assumed to be small fractions of the prop-
erties of the undamaged material, but not equal to zero, to avoid
ill conditioning of the finite element equations. For example, a de-
graded value of the Young’s modulus E,; of the damaged ply within
a finite element is computed as

E,; = (SRCO)E, 71)

where E, is an original value of the Young’s modulus, in this case
multiplied by a stiffness reduction coefficient (SRC).

The face sheets of the sandwich plate are made of laminated com-
posite plates that can fail in different modes due to matrix cracking,
fiber fracture, fiber matrix debonds, and delamination. Therefore,
for accurate prediction of failure in the face sheets, one needs to
use a failure criterion that takes account of the microstructure of
the composite laminates and the variety of modes of failure that can
occur due to this microstructure. A set of failure criteria, designed
for this purpose, were suggestedby Hashin!® Therefore, for the face
sheets, Hashin’s criteria are used in this study.

The core of the sandwich plate, made of polymeric foam or a
honeycomb structure, is modeled as a homogeneous isotropic or
transversely isotropic medium. Such a medium has fewer modes
of failure, namely, crushing under compression and cracking under
tension. Therefore, for the failure analysis of the core, it is more
appropriate to use a failure criterion that does not take account of
the microstructure of the material. One such criterion is the Tsai-
Wau criterion (see Refs. 17 and 18), and it is used for the core in
our study. The core, which is uniform before the beginning of the
damage, becomes nonuniform in the thickness direction (as well
as in longitudinal direction) when the damage starts to progress in
the thickness direction. For this reason, the core is divided into the
nominal layers, and a check of the failure criterion in the middle of
thickness of each such layer is carried out.
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In the case of crushing of the core of the sandwich plate and
tension modes of failure, the SRC for all material constants are set
tobeassmallas possible,buttheir smallnessis limited by the need to
avoidnumericaldifficultiesthatcan be caused by the large difference
of values of material constants of adjacent finite elements. Such
values of the stiffnessreduction coefficients are found by numerical
experimentation.In the numerical examples presented hereafter, the
SRC is set equal to 0.001 in the case of crushing of the core of the
sandwich plate and failure in tension and 0.01 in the case of fiber
failure in compression in the face sheets. The stiffness reduction
coefficient, associated with the fiber failure in compression, is set
equal to a larger value because the compressive fiber mode of failure
is interpreted as buckling of fibers in the matrix.! It is assumed that
if the buckling of the fibers occurs, the layer still has some residual
strength.

At each time step, the average (over a finite element length)
stresses in each layer within each element are used in the failure
criteria.

Now, the algorithm of taking account of damage progressionwill
be presented without details of how it is embedded into the time
integration scheme: (The details will be presented subsequently.)

1) At each time step of time integration, compute average (over
an element length) stresses oy, Oy, Oyy, Oy, Oy, and o, in the
problem coordinate system in all finite elements, in the middle of
each ply of the face sheets [at z = (& + &, 1)/2] and in the middle
of each nominal layer of the core. (Computation of average stresses
was discussed earlier.)

2) Transform the stresses to the principle material coordinates,
that is, compute o, 023, 033, 012, 013, and 3.

3) Substitute the stresses in the material coordinate system into
the failure criteria. The Hashin'® criteria are used for the face sheets
and the Tsai-Wu criterion (Refs. 17 and 18) is used for the core. If
the failure occurs, reduce the appropriate engineering constants of
the face sheets and the core using the methods described earlier.

4) By the use of the modified values of engineering elastic con-
stants, for each layer of each finite element that fails, recompute
elastic constants "‘C[(l.‘), element stiffness matrices, the global stiff-
ness matrix, and restart the analysis at the same time step, that is,
return to step 1. Such a method is used because when failure oc-
curs the stress field changes instantly due to the change of material
properties. This redistribution of the stresses may cause additional
failure to occur. Therefore, in case of failure, the time incrementa-
tion must be stopped, and analysis must be run again for the same
time interval to determine the new failure. If the new failure does
not occur, the analysis can go on to the next time step.

5) If failure does not occur, proceed to the next time step.
Analysis goes on for a number of time steps, specified by a user.

Now, the details will be presented on how the damage progres-
sion algorithm is embedded into the time integration scheme of the
system equations of motion

[M1{®} + [C1{O} + [K{O} + {Q} = {P} (72)

with the use of the Newmark® method. In Eq. (72), the matrix [K ]
is the system stiffness matrix, whose components do not depend on
the nodal unknowns ®;, and {Q} is a nonlinear part of the internal
force vector, whose components are defined as 9(Uy)sysiem/30;,
where (Uy)gysem 18 the whole system’s part of the strain energy that
is not quadratic with respect to the nodal unknowns. The part of
the strain energy (Uni)sysiem appears due to the nonlinear terms in
the von Karman!? strain-displacementrelations. Thus, the problem
being solved numerically is geometrically nonlinear.
Let us introduce the following notations:

{®}i=;, = {0}
is the vector of nodal variables, evaluated at moment of time ¢,, and
{G‘)Hx:th ={0},41

is the vector of nodal variables, evaluated at moment of time #, ; 1,
T= tn +1 = tn .

~With the use of the Taylor series expansion, vectors {®}, ;1 and
{®}, ;1 can be written in the form

{0,141 2 {0}, + {0}, + (4 — B){O), + *B{O},41 (73)

{®}n+l ~ {G)}n + T(l - }/T){@}n + TZ}/{(:)}n+1 (74)

where 8 and y are free parameters that control the accuracy and
stability of the method. In the example problems considered later,
the values of these parameters were chosen to be 8 = i and y =1,
which correspondto the method of constantmean acceleration.Such
a method is unconditionally stable and provides a satisfactory ac-
curacy.

Equations of motion (72), evaluated at a moment of time ¢, . |,
are

MO}, 11 + [CUOL, 11 + [KUOY, 1 + {0}y = (P} (75)

In Egs. (72) and (75), the load vector { P} is due to the gravity force,
and so it does not depend on time and, therefore, does not have the
subscript n. Substitution of Eqs. (73) and (74) into Eq. (75) and
simple transformations yields

(KO}, 1+ {Q} 1 = {F), (76)
where
[K1=[K1+ (1/2*B)IM] + (v /B)IC] (77)
{F)y = (P} = [CIUO), + (1 — yT){O}] + {(1/T°)[M]

+(y/BICH[(8}, + (6}, + (4 — B) (6}, ] (78)

Now, assuming that we know the values of {®},, {O},,, and {©},,
we need to find the values of {®}, , 1, {O},,+ 1, and {O},,+1 Com-
ponents of vector {Q}, 1 |, which enter into Eq. (76), depend non-
linearly on components of the vector of nodal parameters {®}, , ;.
Therefore, Eq. (76) is a nonlinear system of algebraic equations
with respect to components of the vector {®},, ;. These nonlin-
ear equations are solved by a direct iteration (Picard) method (see
Ref. 11).

The direct iteration method is based on computing a sequence of
vectors

o] I3 R, ... (79)

n+1° n+1° n+1°

by solving a system of linear algebraic equations
[K1(O) ) = {F), — Q)] (80)

where the Vector {Q}( , is the vector {Q},, evaluated at
{(®},.1= {O}n +1» thatis, evaluated with the use of values of nodal
parameters ©; obtained at the rth iteration. The components of the
matrix [K] and the vector {F}, do not depend on the unknowns,
that is, on the components of the vector {©}, , . If the sequence
of vectors {@}flljr 1 {@}flzjr 1 {@}f}r |s .., converges to some vec-
tor {©}, + 1, then this vector {©}, + is a solution of the system of
algebraicequations (76). In our numerical implementatlon,the first

2 .
term of the iteration sequence {O}n+1, {G)}flil, {O}n+ IR E
equal to a zero vector at all time intervals:
{5, = {0} @1
n+l 7
for n=1,2,3,.... Iteration is stopped if a norm of vector
{G)}ffrll) - {G)}fl , (a difference of solution vectors in two succes-
sive approximatlons) divided by the norm of vector {©® }ff:l ). isless
than some number (tolerance):
(r+1 (r)
O, 1 — 10}, ”
< tolerance (82)
Q) +D ”
n+1

As a norm of a vector, we used a square root of the sum of the
squares of its components. Let (®; )n+ , be an ith component of the
approximate solution vector obtained in an iteration with a number
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r at a moment of time with a number n + 1. Then the criterion (82)
for stopping the iterations will be written as follows:

Ve @) ]
> [©0: T

In the example problems considered hereafter, we set tolerance=
1x1074,

Thus, in the problems with the damage progression taken into
account, the algorithm of the Newmark®® time integration scheme,
combined with the direct iteration method of solving the nonlinear
algebraic equations (76), can be summarized as follows:

1) At the first time interval [#{, ], set the vectors of initial gen-
eralized displacements {©}, and velocities {0}1 equal to the values
specified in initial conditions. The Vector{O}l of initial generalized
accelerations is found from the Eq. (75), where n is set equal to
Zero:

< tolerance (83)

[M1{®}, + [C1{®}, + [K1{®}, + {0}, = (P}  (84)

This is a system of linear algebraic equations with respect to com-
ponents of the vector {®};. ) B
2) At the nth time interval[?,, #, 1 ], the vectors {®},, {®},, {®},,
and {Q}, are known, and it is necessary to find the vectors {®}, , 1,
{©), s {O},,+ 1, and {Q}, ; ;. For this purpose, the following algo-
rithm is used:
a) Set the iteration counter r equal to 1, and set the initial
approximation for the vector {®}, , | to be a zero vector:
(e, =10 (85)

n+1

b) Evaluate {Q}ffll, that is, evaluate {Q},,; at {®}, =

{G)}fl , and solve a linear system of algebraic equations for the

(r+1,
components of the vector {©} " ":
[KI®Y, [ = (F), — ()], (86)

Evaluate the acceleration vector of the current iteration (iteration
with number r + 1) by the formula

6177 = —=[(0) 7 (@), ~ (6}, —* (4~

n+1 ﬂ n+1

[Equation (87) is obtained by expressing {©},,1 from Eq. (73).]
Evaluate the velocity vector of the current iteration (iteration with

B)io1n] ©87)

0.01

number r + 1) by the formula

©h)) =L+t —yn{@}, + p{O} " (88)
[Equation (88) is obtained from Eq. (74).]

¢) Check if the vectors {©}7 " and {©}") , satisfy the con-
vergence criterion of equation (83).

If the convergence criterion is not satisfied, then begin a new
iteration within this time interval, that is, set r =r + 1 and go back
to the step b. If the convergencecriterion is satisfied, go to the next
step.

d) Set the vector of nodal parameters and the vectors of the
first and second time derivatives of the nodal parameters equal to
the corresponding vectors obtained in the iteration at which the
convergence criterion of the step ¢ was satisfied, that is, set

{©},+1 = {0} (89)
{®}n+l = {é)}f,r_:—]l) (90)
(O}, 11 = (O 1)

for use in the next time step and for computation of stresses at
I=1l 4.
e) Compute averagestressesin all plies of each finite elementat

t =t, .1, using the vectors {®}, , 1, {®},, 1, and {®},, |, obtained
in step d. Substitute these stresses into the failure criteria. If the
failure occurs in a ply of a finite element, modify material elastic
constants of this ply, modify the element stiffness matrix [k] and
the nonlinear internal force vector {¢}, . = (0U,;/3{0}), .1 of the
finite element to which the damaged ply belongs, and assemble
the global stiffness matrix [K] and global nonlinear internal force
vector{Q}, ;| with accountof modifications to the element stiffness
matrices and element nonlinear internal force vectors due to the
damage. Then go to the step b, that is, recompute vectors {®}, 1 1,
{®},,1,and {®}, ;| and stresses at the same moment of time.

(When failure occurs, the stress field changes instantly due to
the change of material properties. This redistribution of the stresses
may cause additional failure to occur. Therefore, in case of failure,
the time incrementation must be stopped and analysis must be run
again for the same time interval to determine the new failure. If the
new failure does not occur, the analysis can go on to the next time
step.)

If failure does not occur, setn =n + 1, that s, go to the next time
interval.

Analysis goes on for a number of time steps, specified by a user.
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Fig.2 Transverse displacement w, at x =L/2,z=— h/2, as a function of time, in a sandwich plate dropped on elastic foundation with initial velocity
— 30 m/s. The foundation modulus is 6.7864 X 108 Pa/m (clay); - - -, results of analysis without account of damage; and —, with damage included.
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Example Problems

In some problems, when the plates are loaded on both the upper
and lower surfaces, or when the plates are on elastic foundations,
transverse compressibility of the sandwich plates can not be ne-
glected. In the proposed finite element formulation, the transverse
compressibility is taken into account by assuming that the direct
transverse strain ¢, is not equal to zero and by including this strain
into the expression for the strain energy. In the following example,
we consider a sandwich plate, with a rigid body on its upper sur-
face, under its impact against an elastic Winkler foundation, and
demonstrate that the change of the plate’s height during this impact
can be captured by the finite element model. In the finite element
formulation, the presence of the rigid body on the upper surface is
taken into account by including a kinetic energy of the rigid body
in Hamilton’s principle. Example problems, considered hereafter
are solved with the use of the geometrically nonlinear formulation.
There are 40 finite elements used in all example problems.

Thus far, the numericalimplementationof the theory is performed
for the case of cylindrical bending only, which occurs if the width
of the plate is larger than the length and if the load on the surface is
uniformly distributed along the width. In this case, the stress distri-
bution and stiffness degradation are uniform in the width direction.

Let us consider an example of a sandwich plate with laminated
composite face sheets, made of AS4/3501-6 material, and a honey-
comb core, made of Nomex HRH10-1/8-4.0. The material properties
of the face sheets and the core, used in the example problems, are
listed hereafter.

The elastic constants of the face sheets are as follows: E; =
144.8 x 10° N/m?, E,=9.7 x 10° N/m?, E;=9.7 x 10° N/m?,
Gy =3.6x10° N/m?, G;3=6x 10° N/m?, G, =6 x 10° N/m?,
Vo3 =034, Vi3 = 03, and Vip = 0.3.

The material strengths of the face sheets are as follows: X7 =
217 x 10° N/m?, X =1.72 x 10° N/m?, Y7 =53.8 x 10° N/m?,
Ye=2055x10° N/m?, Z; =53.8x 105 N/m?, Z;=205.5x
10° N/m?, S,;=289.3 x 105 N/m?, S;3=120.7 x 10° N/m?, and
S12 =120.7 x 10° N/m?, where X7, Yr, Zr, X¢, Yc, and Zo are
the material strengths in tension and compression along the 1, 2,
and 3 directions and S»3, S13, and Sy, are the shear strengths in the
23,13, and 12 planes.

The elastic constants of the core are as follows: E;=
80.4 x 10° N/m?, E, =80.4 x 10° N/m?, E; =1005 x 10® N/m?,
Gy =75.8x10° N/m?, G35 =120.6 x 10° N/m?, G, =322 %
106 N/mz, Vo3 = 002, Vi3 = 002, and Vi = 0.25.

The material strengths of the core are as follows: Z¢ =3.83 x
10 N/m?2, Sy; = 142.3 x 10° N/m?, and S;3 = 177.9 x 10° N/m?.
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Fig. 3 Transverse displacement w (at x =L/2, z=— h/2) as a function
of time in a sandwich plate dropped on elastic foundation with velocity
— 30 m/s. The foundation modulus is 6.7864 X 107 Pa/m (sand); - - -,
results of analysis without account of damage; and —, with damage
included.

Both face sheets have the same thickness 0.0025 m, and each of
them consists of 25 plies with 9—%-deg layup. The thickness of the
core is 0.04 m. On the upper surface of the plate there is a rigid body
of mass 500 kg, located symmetrically with respect to the middle
of the plate’s span, that has the length 0.2 m.

The modulus of the elastic Winkler foundation in the exam-
ple problem, represented by Fig. 2, is 6.7864 x 10® Pa/m (clay).
A time increment, used in numerical integration of equations of
motion (72), is chosento be 1 x 10~ s. We consider a plate falling
on the elastic foundation with velocity —30 m/s. The analysis of
the response [time integration of the equations of motion (72)] in
this and all subsequentexample problems begins at the moment of
time when the falling plate touches the elastic foundation. Figure 2
shows the transverse displacement of the lower surface of the plate
as a function of time, computed with account of damage (solid line)
and without account of damage (dashed line). In the analysis with
the account of damage, the amplitude of vibration is higher. This is
expected because the stiffness of the damaged structure is lower.

Figure 3 shows the transverse displacement of the plate falling
on the foundation with the smaller modulus, 6.7864 x 107 Pa/m.
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Fig.4a Stress oy, at x=L/2,z=— h/2, as a function of time in a sand-
wich plate dropped on elastic foundation with initial velocity — 30 m/s.

The foundation modulus is 6.7864 X 107 Pa/m (sand); - - -, results of
analysis without account of damage; and —, with damage included.
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Fig.4b Stress o, at x=L/2,z=— h/2, as a function of time in a sand-
wich plate dropped on elastic foundation with initial velocity — 30 m/s.
The foundation modulus is 6.7864 X 107 Pa/m (sand); - - -, results of
analysis without account of damage; and —, with damage included.
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Fig. 5 Transverse displacement (at x =— L/2) as a function of time in
a sandwich plate, with a mass on its upper surface, dropped on elas-
tic foundation with initial velocity — 1 m/s. The foundation modulus
is 6.7864 X 107 Pa/m (sand); —, displacement of the lower surface;
and - - -, displacement of the upper surface. (Under this initial velocity,
damage does not occur.)

All other conditions are the same as in the preceding example. We
see that, in the case of the lower modulus of the foundation, the
amplitude of the transverse displacementis higher. So, the effect of
the foundation stiffness is taken into account properly.

Figures4aand 4b shows results of stress analysis with and without
accountof damage progressionof the same sandwich plate under the
impact against the elastic foundation. All conditions of the problem
are the same as in the preceding example. As seen in Fig. 4a, when
the fiber breakage occurs, the in-plane direct strain o, , reducesdras-
tically, due to the degradationof the material characteristics,associ-
ated with the in-plane direction. At the moment of time r =0.016 s,
when stress o at the lower surface of the damaged plate (i.e., force
of interaction between the plate and the elastic foundation per unit
area) reaches a zero value (Fig. 4b), the plate loses contact with
the elastic foundation and bounces up into the air. Therefore, this
and all other graphs are to be considered only for the time interval
during which the stress o, at the lower surface of the plate is not
positive (time interval 0 <t <0.016 s for Fig. 4b), unless the plate
is glued to the elastic foundation at the moment of initial contact
(i.e., is forced to stay in contact with the foundation). If the plate is
forced to stay in contact with the foundation, all of the graphs are
correct for any time duration.

Figure 5 shows the transversedisplacementof the plate falling on
the foundation with the smaller initial velocity, —1 m/s. All other
conditions are the same as in the preceding example. Comparison
of Figs. 3 and 5 shows that the effect of the initial velocity on the
response is captured properly: the lower initial velocity causes the
lower amplitude of vibration.Figure 5 shows also that the amplitude
of the transverse displacement of the upper surface is higher, and
this shows the capability of the model to capture the compressibility
of the plate in the transverse direction.

Conclusions

The theory of the sandwich plate, presented in this paper, has
a wide range of applicability. It can be used for analysis of sand-
wich plates with large and small thickness-to-length ratios, with
thick and thin face sheets, with transversely rigid and transversely
flexible face sheets and cores. The proposed finite element formu-
lation allows one to compute accurately all stress components, both
in-plane and transverse, without using finite element models with
three-dimensionalelements. The geometrical nonlinearity of the fi-
nite element formulation allows for a nonlinear transient analysis
of a sandwich composite plate undergoing moderate rotations. The
algorithm of taking account of damage progression in a dynamic
problem is incorporated into the computational scheme, based on
the geometrically nonlinear formulation.

Appendix: Pointwise Equilibrium Equations
Variationally Consistent with the von Karman
Strain-Displacement Relations

Inthe equationsof this Appendix, the superscriptsk, which denote
the numbers of the sublaminates, will not be used. These equations
have a very general character, and their validity is not limited to the
layerwise plate theory presented in this paper.

To derive pointwise equations of motion, consistent with the von
Kérmdn'? strain-displacementrelations, let us substitute variations
of the von Kérmdn strain-displacementrelations, written in indicial
notations,

Eap = %(”a.ﬁ +ugy +”3.a”3.ﬁ)7 (¢, p=1,2) (AD)
i=1,2,3) (A2)

1
&iz = 5(”[.3 +us;),

into the virtual work principle

/// 0,8, dV =///(E — pii;)du; dV+// 7,8u; dS

%) %) )
(A3)

where F; are components of the body force per unit volume, p is
density,and #; are componentsof the surface traction. The variations
of these strains of Egs. (A1) and (A2) have the form

deap = %(Sua.ﬁ + Oupgy + U3 o 0us g + Uz pdus )
@=1,2;8=1,2) (Ad)
deiz = %(Sum + dus;) (i=1,23) (A5)
Expression 0;;8¢;; can be presented in the form
0ij0€ij = OapdEap + 2043 8€q3 + 0338633
a@=1,2;8=1,2;i=1,2,3;j=1,2,3) (A6)
When we substitute Eqs. (A4) and (A5) into Eq. (A6), we get
0;;8€;j = 0;;0u; j + OgpU3 o SUsz g
a=1,2;6=1,2;i=1,2,3;j=1,2,3) (A7)

If one substitutesexpression (A7) into the left-hand side of Eq. (A3),
one gets

/// U'[j(SE[j dv Z/ [crajnjéua + ((73]71] +Uaﬁu3_anﬁ)8u3]d5

12] ()

- // {Uocj.jauoc + [U3j.j + (Uocﬁu3.oc).ﬁ]6u3}dv
V)
(x=1,2;8=1,2;i=1,2,3;j=1,2,3) (A8)

where ny, n,, and n; are components of the outward unit normal
vector to the surface. The substitution of expression (A8) into the
virtual work principle (A3) yields

0=///a[jae[jdV—// (F; —pﬁ[)Su[dV—//f[Bu[ ds

V) 12] ()

= //[(oajnj — 1)1, dS + (031 + Oypits ong — 13)5u3]dS

(8)

- // {(Uaj.j + F(x — piig)du, + [U3j.j + (Uocﬁu3.oc).ﬁ

12]

+ Fy = piisldus}dV. (@=1,2;=1,2;j=1,2,3)

(A9)
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If one equates to zero the coefficients of variations of displacements,
one obtains the equations of motion

Oyj.j + Fa = plig, 035,; + (Uotﬁu3.oc).ﬁ + F3 = pii3
a@=1,286=1,2;j=1,2,3) (A10)
and natural boundary conditions

Oujlj = lg, O3 + Oupts gng =13 at S,

@=1,28=1,2;j=1,2,3) (All)

where S, is a part of the surface on which displacement constraints
are not imposed. Equations of motion (A12) in expanded form are

+ F, = pii (A13)

Opxx T Oxy,y + Oz,

Open + 0y, + 0.+ F, = pi (A14)

Ozx x + Ozy,y + o

a
+ _(0,\',\' W, + oy, w.v)
ax o

9 _
+ a_(axyw.x + vaw.v) +F = ,ow (A15)
y yW.)
The boundary conditions (A11) in expanded form are
Oully + 0y + 0 n, =1, (A16)
oy, +o,n, +on, =i, (A17)

O Nyt oy, +0o. 0, + 0w, n,

+opw n, +oy(wn, +w,n) =1, (A18)

Inthe postprocessingstage of the finite elementanalysis, the compu-
tation of the transversestresses is done with the use of the pointwise
equations of motion (A13-A15), variationally consistent with the
von Karman'? strain-displacementrelations (2-7).
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